Volume 13, Issue 4 (12-2025)                   JoMMID 2025, 13(4): 291-302 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmad J, Abbasi H A, Atif M, Khan F. Molecular and Phenotypic Characterization of ESBL- and Carbapenemase-Producing Gram-Negative Bacteria in Clinical Isolates from Peshawar, Pakistan. JoMMID 2025; 13 (4) :291-302
URL: http://jommid.pasteur.ac.ir/article-1-716-en.html
Institute of Biotechnology and Genetic Engineering, University of Agriculture, Peshawar, Pakistan
Abstract:   (1287 Views)
Introduction: The rising prevalence of extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacteria and carbapenem-resistant Enterobacteriaceae (CRE) pose significant threats to public health. Methods: This study investigated the prevalence and antibiotic resistance patterns of ESBL-producing Gram-negative bacteria isolated from various clinical samples in Peshawar, Pakistan. Out of 400 samples, 150 (37.5%) were ESBL-positive, including 50 (33.3%) from urine, 50 (33.3%) from indwelling devices, 25 (16.7%) from pus, and 25 (16.7%) from blood. Escherichia coli was the most prevalent species (57.3%), followed by Klebsiella pneumoniae (34.0%). Antibiotic susceptibility testing revealed that all ESBL-producing isolates (n=150) were resistant to ampicillin, cefoperazone, and ceftazidime, excluding intermediate results as per CLSI 2023 guidelines. PCR assays characterized β-lactamase genes, with bla-CTX-M detected in 95.3% of ESBL-producing isolates, followed by bla-TEM (80.6%) and bla-SHV (70.6%). The Modified Hodge Test showed that 14.7% (22/150) of ESBL isolates were carbapenem-resistant, of which a concerning 86.4% (19/22) carried the blaNDM gene. Results: Statistical analysis revealed a significant association between sample type and ESBL positivity (χ²=16.67, P=0.0008), with the highest prevalence in urine samples. However, no significant difference in carbapenem resistance was found between E. coli and K. pneumoniae (χ²=0.0, P=1.000). The presence of the bla_NDM gene was very strongly associated with carbapenem resistance (χ²=101.42, P<0.0001; Cramer’s V=0.82). Conclusion: The high prevalence of ESBL-producing isolates, predominantly carrying the blaCTX-M gene, and the emergence of blaNDM-mediated carbapenem resistance in Peshawar highlight an urgent need for enhanced surveillance and targeted antimicrobial stewardship to guide effective treatment strategies and public health interventions.
 
Full-Text [PDF 859 kb]   (166 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2025/03/17 | Accepted: 2025/09/10 | Published: 2026/02/3

References
1. Abrar S, Hussain S, Khan RA, Ul Ain N, Haider H, Riaz S. Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae: first systematic meta-analysis report from Pakistan. Antimicrob Resist Infect Control. 2018; 7: 26. [DOI:10.1186/s13756-018-0309-1] [PMID] [PMCID]
2. Getahun H. Antimicrobial Resistance. In: Silbermann M, editor. Global Health Essentials. 2nd ed. Cham: Springer; 2023. p. 143-7. [DOI:10.1007/978-3-031-33851-9_22]
3. Temkin E, Fallach N, Almagor J, Gladstone BP, Tacconelli E, Carmeli Y, et al. Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study. Lancet Glob Health. 2018; 6 (9): e969-79. [DOI:10.1016/S2214-109X(18)30278-X] [PMID]
4. Leung E, Weil DE, Raviglione M, Nakatani H. The WHO policy package to combat antimicrobial resistance. Bull World Health Organ. 2011; 89 (5): 390-2. [DOI:10.2471/BLT.11.088435] [PMID] [PMCID]
5. Ahmad M, Hassan M, Khalid A, Tariq I, Asad MHHB, Samad A, et al. Prevalence of extended spectrum β‐Lactamase and antimicrobial susceptibility pattern of clinical isolates of Pseudomonas from patients of Khyber Pakhtunkhwa, Pakistan. Biomed Res Int. 2016; 2016: 6068429. [DOI:10.1155/2016/6068429] [PMID] [PMCID]
6. Fritzenwanker M, Imirzalioglu C, Herold S, Wagenlehner FM, Zimmer K-P, Chakraborty T. Treatment options for carbapenem-resistant gram-negative infections. Dtsch Arztebl Int. 2018; 115 (20-21): 345-52. [DOI:10.3238/arztebl.2018.0345] [PMID] [PMCID]
7. Matar G. ESBL-producing Escherichia coli and Klebsiella pneumoniae in two major Lebanese hospitals: molecular epidemiology and correlation with consumption. J Infect Dev Ctries. 2018; 12 (2.1): 16S. [DOI:10.3855/jidc.10038] [PMID]
8. Grau S, Fondevilla E, Echeverría-Esnal D, Alcorta A, Limon E, Gudiol F, et al. Widespread increase of empirical carbapenem use in acute care hospitals in Catalonia, Spain. Enferm Infecc Microbiol Clin. 2019; 37 (1): 36-40. [DOI:10.1016/j.eimc.2018.03.003] [PMID]
9. Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis. 2019; 69 (Suppl 7): S565-75. [DOI:10.1093/cid/ciz830] [PMID] [PMCID]
10. Abd El Ghany M, Fouz N, Hill-Cawthorne GA. Human movement and transmission of antimicrobial-resistant bacteria. In: Manaia C, Donner E, Vaz-Moreira I, Hong P, editors. Antibiotic Resistance in the Environment: A Worldwide Overview. Cham: Springer International Publishing; 2020. p. 311-44. [DOI:10.1007/698_2020_560]
11. Lutgring JD. Carbapenem-resistant Enterobacteriaceae: an emerging bacterial threat. In: Procop GW, Goldblum JR, editors. Seminars in Diagnostic Pathology. Philadelphia: Elsevier; 2019. [DOI:10.1053/j.semdp.2019.04.011] [PMID]
12. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of action of carbapenem resistance. Antibiotics. 2022; 11 (3): 421. [DOI:10.3390/antibiotics11030421] [PMID] [PMCID]
13. Martin A, Fahrbach K, Zhao Q, Lodise T. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect Dis. 2018; 5 (7): ofy150. [DOI:10.1093/ofid/ofy150] [PMID] [PMCID]
14. Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A review on colistin resistance: an antibiotic of last resort. Microorganisms. 2024; 12 (4): 772. [DOI:10.3390/microorganisms12040772] [PMID] [PMCID]
15. Johansen, H. K., Moskowitz, S. M., Ciofu, O., Pressler, T., & Høiby, N. (2008). Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. Journal of Cystic Fibrosis, 7(5), 391-397. [DOI:10.1016/j.jcf.2008.02.003] [PMID]
16. Janda JM, Abbott SL. Bacterial identification for publication: When is enough enough? J Clin Microbiol. 2002; 40 (6): 1887-91. [DOI:10.1128/JCM.40.6.1887-1891.2002] [PMID] [PMCID]
17. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended‐spectrum β‐lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect. 2008; 14: 90-103. [DOI:10.1111/j.1469-0691.2007.01846.x] [PMID]
18. Sirot J. Detection of extended-spectrum plasmid-mediated beta-lactamases by disk diffusion. Clin Microbiol Infect. 1996; 2: S35-9. [DOI:10.1111/j.1469-0691.1996.tb00873.x] [PMID]
19. Bezabih YM, Sabiiti W, Alamneh E, Bezabih A, Peterson GM, Bezabhe WM, et al. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J Antimicrob Chemother. 2021; 76 (1): 22-9. [DOI:10.1093/jac/dkaa399] [PMID]
20. Vergara A, Moreno-Morales J, Roca I, Pitart C, Kostyanev T, Rodriguez-Baño J, et al. A comparative study between real-time PCR and loop-mediated isothermal amplification to detect carbapenemase and/or ESBL genes in Enterobacteriaceae directly from bronchoalveolar lavage fluid samples. J Antimicrob Chemother. 2020; 75 (6): 1453-7. [DOI:10.1093/jac/dkaa031] [PMID]
21. BMJ Group. Risks of extended-spectrum beta-lactamases. Drug Ther Bull. 2008; 46 (3): 21-4. [DOI:10.1136/dtb.2008.03.0006] [PMID]
22. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021; 3 (3): dlab092. [DOI:10.1093/jacamr/dlab092] [PMID] [PMCID]
23. Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews, 18(4), 657-686. [DOI:10.1128/CMR.18.4.657-686.2005] [PMID] [PMCID]
24. Damoa-Siakwan S. Extended-spectrum beta lactamases: an overview. British Journal of Infection Control. 2005; 6 (6): 25-8. [DOI:10.1177/14690446050060060701]
25. Sathyavathy K, Madhusudhan BK. Review on clinical diseases caused by Klebsiella. J Pharm Res Int. 2020; 32 (21): 12-9. [DOI:10.9734/jpri/2020/v32i2130745]
26. Jamil B, Bokhari MTM, Saeed A, Bokhari MZM, Hussain Z, Ahmed A, et al. Multidrug resistance in Gram-negative pathogens isolated from patients with chronic kidney diseases and renal transplant. J Pak Med Assoc. 2018; 68 (4): 642-5.
27. Bhatia R. Universal health coverage framework to combat antimicrobial resistance. Indian J Med Res. 2018; 147 (3): 228-32. [DOI:10.4103/ijmr.IJMR_1462_17] [PMID] [PMCID]
28. Aguilar-Bultet L, Gómez-Sanz E, García-Martín AB, Hug MA, Furger R, Eichenberger L, et al. Extended-spectrum β-lactamase-producing Enterobacterales in municipal wastewater collections, Switzerland, 2019-2023. Emerg Infect Dis. 2025; 31 (3): 574-8. [DOI:10.3201/eid3103.240099] [PMID] [PMCID]
29. Rajabnia M, Forghani MS, Hasani S, Bahadoram M, Mohammadi M, Barahman M. Prevalence and antibiotic resistance pattern of extended spectrum beta lactamase producing Escherichia coli isolated from urinary tract infection. J Renal Inj Prev. 2018 ;8 (2): 78-81. [DOI:10.15171/jrip.2019.15]
30. Choudhury D, Alanbari R, Saveliev P, Sokurenko E, Fuzi M, Tchesnokova V. Clonal and resistance profiles of fluoroquinolone-resistant uropathogenic Escherichia coli in countries with different practices of antibiotic prescription. Front Microbiol. 2024; 15: 1446818. [DOI:10.3389/fmicb.2024.1446818] [PMID] [PMCID]
31. Garcia-Bustos V, Cabañero-Navalón MD, Lletí MS. Resistance to beta-lactams in Gram-negative bacilli: relevance and potential therapeutic alternatives. Rev Esp Quimioter. 2022; 35 (Suppl 2): 1-5. [DOI:10.37201/req/s02.01.2022] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.