1. Sabri NA, Schmitt H, Van der Zaan B, Gerritsen HW, Zuidema T, Rijnaarts HHM, et al. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J Environ Chem Eng. 2018; 8 (1). [
DOI:10.1016/j.jece.2018.03.004]
2. Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20 (11): 2747. [
DOI:10.3390/ijms20112747]
3. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022; 399 (10325): 629- 55. [
DOI:10.1016/S0140-6736(21)02724-0]
4. Sakkas H, Bozidis P, Ilia A, Mpekoulis G. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiotics. 2019; 8 (85): 85. [
DOI:10.3390/antibiotics8030085]
5. Bhagirath A, Yangi L, Patidar R, Yerex K, Ma X, Kumar A, et al. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci. 2019; 20 (7): 1781. [
DOI:10.3390/ijms20071781]
6. Parvez S, Khan A. Hospital sewage water: A reservoir for variants of New Delhi metallo-β-lactamase (NDM)- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Int J Antimicrob Agents. 2018; 51: 82-8. [
DOI:10.1016/j.ijantimicag.2017.08.032]
7. Galvin S, Boyle F, Hickey P, Vellinga A, Morris D, Cormican M. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl Environ Microbiol. 2010; 76 (14): 4772-9. [
DOI:10.1128/AEM.02898-09]
8. Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FVB, Assis DM, et al. The route of antimicrobial resistance from the hospital effluent to the environment: Focus on the occurrence of KPC-producing Aeromonas spp.. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis. 2013; 76 (1): 80-5. [
DOI:10.1016/j.diagmicrobio.2013.02.001]
9. World Health Organization. AWARE Classification antibiotics. Available At: https://www.who.int/news/item/01-10-2019-who-releases-the-2019-aware- classification-antibiotics (accessed March 2024).
10. Sib E, Lenz-plet F, Barabasch V, Savin M, Hembach N, Schallenberg A, et al. Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Sci Total Environ. 2020; 746: 140894. [
DOI:10.1016/j.scitotenv.2020.140894]
11. WHO. Critically important antimicrobials for human medicine, 6th revision. Available from https://www.who.int/foodsafety/publications/antimicrobials-sixth/en/. 2019 (accessed March 2024)
12. Jovcic B, Novovic K, Dekic S, Hrenovic J. Colistin Resistance in Environmental Isolates of Acinetobacter baumannii. Microb Drug Resist. 2021; 27 (3): 328-36. [
DOI:10.1089/mdr.2020.0188]
13. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005; 40 (9): 1333-41. [
DOI:10.1086/429323]
14. Bialvaei ZA, Kafil SH. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015; 31 (4): 707-21. [
DOI:10.1185/03007995.2015.1018989]
15. Sun J, Zhang H, Liu YH, Feng Y. Towards understanding MCR-like colistin resistance. Trends Microbiol. 2018; 26 (9): 794-808. [
DOI:10.1016/j.tim.2018.02.006]
16. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo). 2014; 67 (2): 147-51. [
DOI:10.1038/ja.2013.111]
17. Abavisani M, Bostanghadiri N, Ghahramanpour H, Kodori M, Akrami F, Fathizadeh H, et al. Colistin resistance mechanisms in Gram-negative bacteria: A Focus on Escherichia coli. Letters Appl Microbiol. 2023; 76 (2): ovad023. [
DOI:10.1093/lambio/ovad023]
18. Cheesbrough M. District Laboratory Practice in Tropical Countries. Part 2. 2nd ed. Cambridge: Cambridge University Press; 2000. p. 157-9.
19. Oli AN, Ogbuagu VI, Ejikeugwu CP, Iroha IR, Ugwu MC, Ofomata CM, et al. Multi-Antibiotic Resistance and Factors Affecting Carriage of Extended Spectrum β -Lactamase-Producing Enterobacteriaceae in Pediatric Population of Enugu Metropolis, Nigeria. Med Sci. 2019; 7: 104-16. [
DOI:10.3390/medsci7110104]
20. Mangal S, Park H, Zeng L, Yu HH, Lin YW, Velkov T, et al. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm. 2018; 548 (1): 443-53. [
DOI:10.1016/j.ijpharm.2018.07.010]
21. Hedges AJ. Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol. 2002; 76 (3): 207-14. [
DOI:10.1016/S0168-1605(02)00022-3]
22. Fawole M, Oso B. Characterization of bacteria: In: Laboratory Manual of Microbiology. Spectrum Book Ltd, Ibadan, Nigeria. 2004; 24-45.
23. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
24. European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint tables for interpretation of MICs and zone diameters, 2020; version 10.0.
25. Aldous WK, Pounder JI, Cloud JL, Woods GL. Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. J Clin Microbiol, 2005; 43 (5): 2471-3. [
DOI:10.1128/JCM.43.5.2471-2473.2005]
26. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018; 23 (6): 17-00672. [
DOI:10.2807/1560-7917.ES.2018.23.6.17-00672]
27. Ma F, Shen C, Zheng X, Liu Y, Chen H, Zhong L, et al. Identification of a novel plasmid carrying mcr-4.3 in an Acinetobacter baumannii strain in China. Antimicrob Agents Chemother. 2019; 63 (6): e00133-19. [
DOI:10.1128/AAC.00133-19]
28. Mcgann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, et al. Escherichia coli Harboring mcr-1 and bla CTX-M on a Novel IncF Plasmid: First Report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016, 60 (7): 4420-1. [
DOI:10.1128/AAC.01103-16]
29. Villar HE, Baserni MN, Jugo MB. Faecal contamination of recreational freshwaters in Buenos Aires, Argentina. Water Sci Technol, 2018; 48: 233-8.
30. Li B, Zhang Y, Wei J, Shao D, Liu K, Shi Y, et al. Characterization of a novel small plasmid carrying the florfenicol resistance gene floR in Haemophilus parasuis. J Antimicrob Chemother. 2015; 70 (11): 3159-61. [
DOI:10.1093/jac/dkv230]
31. Savin M, Bierbaum G, Hammerl JA, Heinemann C, Parcina M, Sib E. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci Total Environ. 2020; 727: 138788. [
DOI:10.1016/j.scitotenv.2020.138788]
32. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev. 2019; 32 (3): e00135-18. [
DOI:10.1128/CMR.00135-18]
33. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015; 28 (3): 603-61. [
DOI:10.1128/CMR.00134-14]
34. Berendonk TU, Manaia CM, Merlin C, Kassinos DF, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol, 2015; 13 (5): 310-7. [
DOI:10.1038/nrmicro3439]
35. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014; 5: 643. [
DOI:10.3389/fmicb.2014.00643]
36. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008; 197 (8): 1079-81. [
DOI:10.1086/533452]
37. Tacconelli E, Carrara E, Savoldi A. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18 (3): 318-27. [
DOI:10.1016/S1473-3099(17)30753-3]
38. Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between the rate of fluoroquinolones-resistant gram-negative bacteria and antibiotic consumption from China based on 145 tertiary hospitals data in 2014. BMC Infect Dis. 2020; 20 (1): 269. [
DOI:10.1186/s12879-020-04981-0]
39. Du H, Chen L, Tang YW, Kreiswirth BN. The emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect Dis. 2016; 18 (3): 287-8. [
DOI:10.1016/S1473-3099(16)00056-6]
40. Fernandes MR, McCulloch JA, Vianello MA, Moura Q, Pérez-Chaparro PJ, Esposito F. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli sequence type 101 isolate from a human infection in Brazil. Antimicrob Agents Chemother. 2016; 60 (10): 6415-7. [
DOI:10.1128/AAC.01325-16]