Volume 11, Issue 4 (12-2023)                   JoMMID 2023, 11(4): 192-199 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashayekh N, Modiri L, Ghane M, Erfani Y. Antimicrobial Effect of Zinc Oxide Nanoparticles against Multidrug-Resistant Acinetobacter baumannii. JoMMID 2023; 11 (4) :192-199
URL: http://jommid.pasteur.ac.ir/article-1-616-en.html
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Abstract:   (941 Views)
Introduction: Increased multidrug-resistant (MDR) Acinetobacter baumannii infections pose a significant challenge in hospital settings. Enhanced resistance to antibiotics like fluoroquinolones and β-lactams necessitates adopting alternative treatment strategies such as metal oxide nanoparticles. This study investigated the synergistic effect of zinc oxide nanoparticles (ZnO-NPs) on ciprofloxacin and ceftazidime activity against MDR A. baumannii. Methods: We examined 30 MDR A. baumannii isolates from intensive care unit (ICU) patients in Iran. ZnO-NPs were synthesized via the solvothermal method and characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) to ascertain their crystalline structure and morphology. Antibacterial activity was evaluated by determining minimum inhibitory concentrations (MICs) and inhibition zones through broth microdilution and disk diffusion methods, using concentrations of ciprofloxacin and ceftazidime in combination with ZnO-NPs. Results: ZnO-NPs combined with ciprofloxacin 8 μg/mL and ceftazidime 32 μg/mL exhibited inhibition growth percentage (GI%) increases of 44.9% and 31.65%.  Conclusion: The enhanced in vitro antibacterial effects of combined ZnO-NPs and antibiotics against MDR A. baumannii indicate a synergy. Considering the limited number of isolates, comprehensive research incorporating in vivo models and clinical trials is warranted to evaluate the practicality of this approach in overcoming antibiotic resistance.

 
Full-Text [PDF 1070 kb]   (309 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/11/1 | Accepted: 2023/12/10 | Published: 2024/02/24

References
1. Fariba A, Amirmorteza Ebrahimzadeh N. Acinetobacter baumannii as Nosocomial Pathogenic Bacteria. Mol Gen Microbiol Virol. 2019; 34 (2): 84-96. [DOI:10.3103/S0891416819020046]
2. Lynch JP, 3rd, Zhanel GG, Clark NM. Infections Due to Acinetobacter baumannii in the ICU: Treatment Options. Semin Respir Crit Care Med. 2017; 38 (3): 311-25. [DOI:10.1055/s-0037-1599225] [PMID]
3. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. The global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51 (10): 3471-84. [DOI:10.1128/AAC.01464-06] [PMID] []
4. Basatian-Tashkan B, Niakan M, Khaledi M, Afkhami H, Sameni F, Bakhti S, et al. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Res Notes. 2020; 13 (1): 543. [DOI:10.1186/s13104-020-05387-6] [PMID] []
5. Alkasaby NM, El Sayed Zaki M. Molecular Study of Acinetobacter baumannii Isolates for Metallo-β-Lactamases and Extended-Spectrum-β-Lactamases Genes in Intensive Care Unit, Mansoura University Hospital, Egypt. Int J Microbiol. 2017; 2017: 3925868. [DOI:10.1155/2017/3925868] [PMID] []
6. Zaki MES, Abou ElKheir N, Mofreh M. Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acinetobacter baumannii Resistant to Fluoroquinolone. Open Microbiol J. 2018; 12: 116-22. [DOI:10.2174/1874285801812010116] [PMID] []
7. Ardebili A, Lari AR, Talebi M. Correlation of ciprofloxacin resistance with the AdeABC efflux system in Acinetobacter baumannii clinical isolates. Ann Lab Med. 2014; 34 (6): 433-8. [DOI:10.3343/alm.2014.34.6.433] [PMID] []
8. Ghasemi F, Jalal R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist. 2016; 6: 118-22. [DOI:10.1016/j.jgar.2016.04.007] [PMID]
9. Hetta HF, Al-Kadmy IMS, Khazaal SS, Abbas S, Suhail A, El-Mokhtar MA, et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci Rep. 2021; 11 (1): 10751. [DOI:10.1038/s41598-021-90208-4] [PMID] []
10. Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M. Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog. 2018; 116: 263-72. [DOI:10.1016/j.micpath.2018.01.033] [PMID]
11. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015; 7 (3): 219-42. [DOI:10.1007/s40820-015-0040-x] [PMID] []
12. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013; 37 (2): 130-55. [DOI:10.1111/j.1574-6976.2012.00344.x] [PMID]
13. Ashtaputre SS, Deshpande A, Marathe S, Wankhede M, Chimanpure J, Pasricha R, et al. Synthesis and analysis of ZnO and CdSe nanoparticles. Pramana. 2005; 65: 615-20. [DOI:10.1007/BF03010449]
14. Vickers NJ. Animal communication: when i'm calling you, will you answer too? Curr Biol. 2017; 27 (14): R713-R5. [DOI:10.1016/j.cub.2017.05.064] [PMID]
15. Moosavi M, Goharshadi EK, Youssefi A. Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow. 2010; 31 (4): 599-605. [DOI:10.1016/j.ijheatfluidflow.2010.01.011]
16. Constantiniu S, Romaniuc A, Iancu LS, Filimon R, Taraşi I. Cultural and biochemical characteristics of Acinetobacter spp. strains isolated from hospital units. J Prev Med. 2004; 12 (3-4): 35-42.
17. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2023.
18. Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci. 2010; 6 (6): 556-68. [DOI:10.7150/ijbs.6.556] [PMID] []
19. Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine. 2011; 6: 2873-7. [DOI:10.2147/IJN.S23945] [PMID] []
20. Noori M, Mohsenzadeh B, Bahramian A, Shahi F, Mirzaei H, Khoshnood S. Characterization and frequency of antibiotic resistance related to membrane porin and efflux pump genes among Acinetobacter baumannii strains obtained from burn patients in Tehran, Iran. J Acute Dis. 2019; 8 (2): 63-6. [DOI:10.4103/2221-6189.254428]
21. Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. A 5-year surveillance study on antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect Chemother. 2016; 48 (3): 190-8. [DOI:10.3947/ic.2016.48.3.190] [PMID] []
22. Vakili B, Fazeli H, Shoaei P, Yaran M, Ataei B, Khorvash F, et al. Detection of colistin sensitivity in clinical isolates of Acinetobacter baumannii in Iran. J Res Med Sci. 2014; 19 (Suppl 1): S67-S70.
23. Shokrollahi B, Bafroee AST, Saleh T. Effect of Zinc Oxide Nanoparticles on Loaded Antibiotics Against Multidrug-Resistant Acinetobacter spp. Avicenna J Clin Microb Infec. 2021; 8 (2): 51-6. [DOI:10.34172/ajcmi.2021.10]
24. Al-Naqshbandi AA, Chawsheen MA, Abdulqader HH. Prevalence and antimicrobial susceptibility of bacterial pathogens isolated from urine specimens received in Rizgary hospital-Erbil. J Infect Public Health. 2019; 12 (3): 330-6. [DOI:10.1016/j.jiph.2018.11.005] [PMID]
25. Lv Y, Xiang Q, Jin YZ, Fang Y, Wu YJ, Zeng B, et al. Faucet aerators as a reservoir for Carbapenem-resistant Acinetobacter baumannii: a healthcare-associated infection outbreak in a neurosurgical intensive care unit. Antimicrob Resist Infect Control. 2019; 8 (1): 205. [DOI:10.1186/s13756-019-0635-y] [PMID] []
26. Venubabu Thati A, Roy S, Prasad M, Shivannavar C, Gaddad S. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. J Biosci Technol. 2010; 1 (2): 64-9.
27. Venkatasubramanian K, Sundaraj S. Antibacterial activity of Zinc Oxide and Ag doped Zinc Oxide Nanoparticles against E. coli. Chem Sci Rev Lett. 2014; 3: 40-4.
28. Raja FNS, Worthington T, Martin RA. The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: alone and in combination. Biomed Mater. 2023; 18 (4): 045003. [DOI:10.1088/1748-605X/acd03f] [PMID]
29. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021;10 (3): 373 [DOI:10.3390/pathogens10030373] [PMID] []
30. Javedani Bafekr J, Jalal R. In vitro antibacterial activity of ceftazidime, unlike ciprofloxacin, improves in the presence of ZnO nanofluids under acidic conditions. IET Nanobiotechnol. 2018; 12 (5): 640-6. [DOI:10.1049/iet-nbt.2017.0119] [PMID] []
31. Ye Q, Chen W, Huang H, Tang Y, Wang W, Meng F, et al. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol. 2020; 104 (12): 5213-27. [DOI:10.1007/s00253-020-10600-4] [PMID]
32. Banoee M, Seif S, Nazari ZE, Jafari‐Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B Appl Biomater. 2010; 93 (2): 557-61. [DOI:10.1002/jbm.b.31615] [PMID]
33. Cardozo TR, De Carli RF, Seeber A, Flores WH, da Rosa JAN, Kotzal QSG, et al. Genotoxicity of zinc oxide nanoparticles: an in vivo and in silico study. Toxicol Res (Camb). 2019; 8 (2): 277-86. [DOI:10.1039/C8TX00255J] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.