1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022; 399 (10325): 629-55. [
DOI:10.1016/S0140-6736(21)02724-0]
2. Chagas TP, Seki LM, Cury JC, Oliveira JA, Dávila AM, Silva DM, et al. Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol. 2011; 111 (3): 572-81. [
DOI:10.1111/j.1365-2672.2011.05072.x]
3. Nwafia IN, Ohanu ME, Ebede SO, Ozumba UC. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase-producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann Clin Microbiol Antimicrob. 2019; 18 (1): 41. [
DOI:10.1186/s12941-019-0342-9]
4. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram-negative bacteria. J Glob Infect Dis. 2010; 2 (3): 263-74. [
DOI:10.4103/0974-777X.68531]
5. Dawoud TMS, Syed A, Maurya AK, Ahmad SS, Rabbani Q, Alyousef AA, et al. Incidence and antimicrobial profile of extended-spectrum β-lactamase producing Gram-negative bacterial isolates: An in-vitro and statistical analysis. J Infect Public Health. 2020; 13 (11): 1729-33. [
DOI:10.1016/j.jiph.2020.06.026]
6. Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect Dis. 2017; 17 (1): 616. [
DOI:10.1186/s12879-017-2713-1]
7. Fagbamila IO, Barco L, Mancin M, Kwaga J, Ngulukun SS, Zavagnin P, et al. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE. 2017; 12 (3): e0173097. [
DOI:10.1371/journal.pone.0173097]
8. Chijioke AN, Christian UI. Antibiotic resistance profile of Escherichia coli isolated from five major geopolitical zones of Nigeria. J Bacteriol Res. 2013; 5 (3): 29-34. [
DOI:10.5897/JBR2012.035]
9. Cheesbrough M. District laboratory practice in tropical countries. 2 ed. Cambridge: Cambridge University Press; 2006. [
DOI:10.1017/CBO9780511543470]
10. Cullen JJ, MacIntyre HL. On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment. J Appl Phycol. 2016; 28 (1): 279-98. [
DOI:10.1007/s10811-015-0601-x]
11. Fawole M, Oso B. Characterization of bacteria: Laboratory Manual of Microbiology. Spectrum Book Ltd, Ibadan, Nigeria. 2004; 24-45.
12. Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI (NCCLS). 2006; 26: M7-A.
13. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. 2009; 15: 55-63.
14. Tomoeda M, Inuzuka M, Anto S, Konishi M. Curing action of sodium dodecyl sulfate on a Proteus mirabilis R+ strain. J Bacteriol. 1974; 120 (3): 1158-63. [
DOI:10.1128/jb.120.3.1158-1163.1974]
15. Mirkalantari S, Masjedian F, Irajian G, Siddig EE, Fattahi A. Determination of the frequency of β-lactamase genes (bla shv, bla tem, bla ctx-m) and phylogenetic groups among ESBL-producing uropathogenic Escherichia coli isolated from outpatients. J Lab Med. 2020; 44 (1): 27-33. [
DOI:10.1515/labmed-2018-0136]
16. Ogefere HO, Aigbiremwen PA, Omoregie R. Extended-spectrum beta-lactamase (ESBL)-producing Gram-negative isolates from urine and wound specimens in a tertiary health facility in southern Nigeria. Trop J Pharm Res. 2015; 14 (6): 1089-94. [
DOI:10.4314/tjpr.v14i6.22]
17. Andrew B, Kagirita A, Bazira J. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in patients admitted at KRRH, Southwestern Uganda. Int J Microbiol. 2017; 3183076. [
DOI:10.1155/2017/3183076]
18. Jain A, Roy I, Gupta MK, Kumar M, Agarwal S. Prevalence of extended-spectrum β-lactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J Med Microbiol. 2003; 52 (5): 421-5. [
DOI:10.1099/jmm.0.04966-0]
19. Barcella L, Barbaro AP, Rogolino SB. Colonial morphology of Escherichia coli: Impact of detection in clinical specimens. Microbiol Med. 2016; 31 (2): 5636 [
DOI:10.4081/mm.2016.5636]
20. Zinnah M, Bari M, Islam M, Hossain M, Rahman M, Haque M, et al. Characterization of Escherichia coli isolated from samples of different biological and environmental sources. Bangl J Vet Med. 2007; 5 (1&2): 25-32. [
DOI:10.3329/bjvm.v5i1.1305]
21. Mahe A, Sabiu B, Adam A, Abdullahi U. Effect of citric acid at different pH on the survival of Escherichia coli. Bayero J Pure Appl Sci. 2021; 14 (1): 79-84. [
DOI:10.4314/bajopas.v14i1.11]
22. Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL production among Escherichia coli and Klebsiella spp. Causing urinary tract infection: A hospital based study. Open Microbiol J. 2017; 11: 23-30. [
DOI:10.2174/1874285801711010023]
23. Mahdi Yahya Mohsen S, Hamzah HA, Muhammad Imad Al-Deen M, Baharudin R. Antimicrobial Susceptibility of Klebsiella pneumoniae and Escherichia coli with Extended-Spectrum β-lactamase associated Genes in Hospital Tengku Ampuan Afzan, Kuantan, Pahang. Malays J Med Sci. 2016; 23 (2): 14-20.
24. Yusuf I, Haruna M, Yahaya H. Prevalence and antibiotic susceptibility of ampc and ESBLs-producing clinical isolates at a tertiary health care center in Kano, North-west Nigeria. Afr J Clin Exp Microbiol. 2013; 14 (2): 109-19. [
DOI:10.4314/ajcem.v14i2.12]
25. Shashwati N, Kiran T, Dhanvijay A. Study of extended spectrum β-lactamase producing Enterobacteriaceae and antibiotic co-resistance in a tertiary care teaching hospital. J Nat Sci Biol Med. 2014; 5 (1): 30-5. [
DOI:10.4103/0976-9668.127280]
26. Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago hospital, Uganda. BMC Pharmacol Toxicol. 2015; 16: 14. [
DOI:10.1186/s40360-015-0013-1]
27. Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev. 2018; 42 (6): 781-804. [
DOI:10.1093/femsre/fuy031]
28. Manjunath GN, Prakash R, Vamseedhar A, Shetty . Changing trends in the spectrum of antimicrobial drug resistance pattern of uropathogens isolated from hospitals and community patients with urinary tract infections in Tumkur and Bangalore. Int J Biol Med Res. 2011; 2 (2): 504-7.
29. Giwa FJ, Ige OT, Haruna DM, Yaqub Y, Lamido TZ, Usman SY. Extended-spectrum beta-lactamase production and antimicrobial susceptibility pattern of uropathogens in a tertiary hospital in Northwestern Nigeria. Ann Trop Pathol. 2018; 9 (1): 11-6. [
DOI:10.4103/atp.atp_39_17]
30. Hussain A, Mirza IA, Ikra A, Sattar A, Ali S, Khan IU. In vitro sensitivity of chloramphenicol against extended spectrum beta lactamase producing Gram negative bacteria. Infect Dis J Pak. 2012; 21 (4): 503-6.
31. Cho S-Y, Choi S-M, Park SH, Lee D-G, Choi J-H, Yoo J-H. Amikacin therapy for urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Korean J Intern Med. 2016; 31 (1): 156-61. [
DOI:10.3904/kjim.2016.31.1.156]
32. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008; 17 (1): 32-6. [
DOI:10.1159/000109587]