Volume 11, Issue 1 (3-2023)                   JoMMID 2023, 11(1): 34-40 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ja'afaru M, Gaure A, Ewansiha J, Adeyemo O. Prevalence of Extended Spectrum β-Lactamases-Producing Escherichia coli Isolated from Clinical Samples and Their Antibiotic Resistance Pattern. JoMMID 2023; 11 (1) :34-40
URL: http://jommid.pasteur.ac.ir/article-1-509-en.html
Department of Biotechnology, Modibbo Adama University, Yola, PMB 2076, Adamawa State, Nigeria
Abstract:   (67 Views)
Introduction: Infections caused by ESBL-producing bacteria are a growing concern worldwide, especially in developing countries like Nigeria. Hence, this study aimed to isolate, screen, and identify ESBL-producing Escherichia coli from clinical samples and analyze their antibiotic resistance patterns. Methods: 200 clinical samples were collected, consisting of 60 stool, 88 urine, and 52 wound pussamples. We used the pour-plate method on MaCconkey agar (MAC) for isolation. After suspected E. coli was isolated, we sub-cultured it on eosin methylene blue (EMB) agar. To confirm E. coli identification, we used cultural and biochemical assays. Disc and double disc diffusion methods were employed to screen and confirm ESBL-producing E. coli. Antimicrobial susceptibility testing was conducted by disc diffusion technique, and the results were interpreted using CLSI standards. Results: A total of 47 E. coli isolates were obtained, with 48.5% of the isolates originating from urine samples. These isolates were among six different genera of bacteria. Among the E. coli isolates, 16 were confirmed to be ESBL producers. The ESBL-producing E. coli demonstrated high resistance to amoxicillin-clavulanic acid (87.5%), ampicillin (75.0%), and cefotaxime (50.0%). Before plasmid curing, the bacteria demonstrated a high susceptibility to chloramphenicol (81.3%) and amikacin (56.3%). However, varying antibiotic resistance and susceptibility degrees were observed after plasmid curing. Conclusion: ESBL-producing E. coli showed a high resistance level (34.0%) against most discs used. However, chloramphenicol and amikacin showed promise as potential treatments for ESBL-producing E. coli infections. In addition, it is recommended that clinical laboratories should include routine ESBL detection methods for ongoing surveillance of antibiotic-resistant isolates. This will serve as a helpful guide for empirically treating bacterial infections.
Full-Text [PDF 1078 kb]   (43 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2022/11/16 | Accepted: 2023/04/26 | Published: 2023/05/20

1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022; 399 (10325): 629-55. [DOI:10.1016/S0140-6736(21)02724-0]
2. Chagas TP, Seki LM, Cury JC, Oliveira JA, Dávila AM, Silva DM, et al. Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol. 2011; 111 (3): 572-81. [DOI:10.1111/j.1365-2672.2011.05072.x]
3. Nwafia IN, Ohanu ME, Ebede SO, Ozumba UC. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase-producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann Clin Microbiol Antimicrob. 2019; 18 (1): 41. [DOI:10.1186/s12941-019-0342-9]
4. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram-negative bacteria. J Glob Infect Dis. 2010; 2 (3): 263-74. [DOI:10.4103/0974-777X.68531]
5. Dawoud TMS, Syed A, Maurya AK, Ahmad SS, Rabbani Q, Alyousef AA, et al. Incidence and antimicrobial profile of extended-spectrum β-lactamase producing Gram-negative bacterial isolates: An in-vitro and statistical analysis. J Infect Public Health. 2020; 13 (11): 1729-33. [DOI:10.1016/j.jiph.2020.06.026]
6. Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect Dis. 2017; 17 (1): 616. [DOI:10.1186/s12879-017-2713-1]
7. Fagbamila IO, Barco L, Mancin M, Kwaga J, Ngulukun SS, Zavagnin P, et al. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE. 2017; 12 (3): e0173097. [DOI:10.1371/journal.pone.0173097]
8. Chijioke AN, Christian UI. Antibiotic resistance profile of Escherichia coli isolated from five major geopolitical zones of Nigeria. J Bacteriol Res. 2013; 5 (3): 29-34. [DOI:10.5897/JBR2012.035]
9. Cheesbrough M. District laboratory practice in tropical countries. 2 ed. Cambridge: Cambridge University Press; 2006. [DOI:10.1017/CBO9780511543470]
10. Cullen JJ, MacIntyre HL. On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment. J Appl Phycol. 2016; 28 (1): 279-98. [DOI:10.1007/s10811-015-0601-x]
11. Fawole M, Oso B. Characterization of bacteria: Laboratory Manual of Microbiology. Spectrum Book Ltd, Ibadan, Nigeria. 2004; 24-45.
12. Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI (NCCLS). 2006; 26: M7-A.
13. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. 2009; 15: 55-63.
14. Tomoeda M, Inuzuka M, Anto S, Konishi M. Curing action of sodium dodecyl sulfate on a Proteus mirabilis R+ strain. J Bacteriol. 1974; 120 (3): 1158-63. [DOI:10.1128/jb.120.3.1158-1163.1974]
15. Mirkalantari S, Masjedian F, Irajian G, Siddig EE, Fattahi A. Determination of the frequency of β-lactamase genes (bla shv, bla tem, bla ctx-m) and phylogenetic groups among ESBL-producing uropathogenic Escherichia coli isolated from outpatients. J Lab Med. 2020; 44 (1): 27-33. [DOI:10.1515/labmed-2018-0136]
16. Ogefere HO, Aigbiremwen PA, Omoregie R. Extended-spectrum beta-lactamase (ESBL)-producing Gram-negative isolates from urine and wound specimens in a tertiary health facility in southern Nigeria. Trop J Pharm Res. 2015; 14 (6): 1089-94. [DOI:10.4314/tjpr.v14i6.22]
17. Andrew B, Kagirita A, Bazira J. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in patients admitted at KRRH, Southwestern Uganda. Int J Microbiol. 2017; 3183076. [DOI:10.1155/2017/3183076]
18. Jain A, Roy I, Gupta MK, Kumar M, Agarwal S. Prevalence of extended-spectrum β-lactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J Med Microbiol. 2003; 52 (5): 421-5. [DOI:10.1099/jmm.0.04966-0]
19. Barcella L, Barbaro AP, Rogolino SB. Colonial morphology of Escherichia coli: Impact of detection in clinical specimens. Microbiol Med. 2016; 31 (2): 5636 [DOI:10.4081/mm.2016.5636]
20. Zinnah M, Bari M, Islam M, Hossain M, Rahman M, Haque M, et al. Characterization of Escherichia coli isolated from samples of different biological and environmental sources. Bangl J Vet Med. 2007; 5 (1&2): 25-32. [DOI:10.3329/bjvm.v5i1.1305]
21. Mahe A, Sabiu B, Adam A, Abdullahi U. Effect of citric acid at different pH on the survival of Escherichia coli. Bayero J Pure Appl Sci. 2021; 14 (1): 79-84. [DOI:10.4314/bajopas.v14i1.11]
22. Shakya P, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL production among Escherichia coli and Klebsiella spp. Causing urinary tract infection: A hospital based study. Open Microbiol J. 2017; 11: 23-30. [DOI:10.2174/1874285801711010023]
23. Mahdi Yahya Mohsen S, Hamzah HA, Muhammad Imad Al-Deen M, Baharudin R. Antimicrobial Susceptibility of Klebsiella pneumoniae and Escherichia coli with Extended-Spectrum β-lactamase associated Genes in Hospital Tengku Ampuan Afzan, Kuantan, Pahang. Malays J Med Sci. 2016; 23 (2): 14-20.
24. Yusuf I, Haruna M, Yahaya H. Prevalence and antibiotic susceptibility of ampc and ESBLs-producing clinical isolates at a tertiary health care center in Kano, North-west Nigeria. Afr J Clin Exp Microbiol. 2013; 14 (2): 109-19. [DOI:10.4314/ajcem.v14i2.12]
25. Shashwati N, Kiran T, Dhanvijay A. Study of extended spectrum β-lactamase producing Enterobacteriaceae and antibiotic co-resistance in a tertiary care teaching hospital. J Nat Sci Biol Med. 2014; 5 (1): 30-5. [DOI:10.4103/0976-9668.127280]
26. Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago hospital, Uganda. BMC Pharmacol Toxicol. 2015; 16: 14. [DOI:10.1186/s40360-015-0013-1]
27. Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev. 2018; 42 (6): 781-804. [DOI:10.1093/femsre/fuy031]
28. Manjunath GN, Prakash R, Vamseedhar A, Shetty . Changing trends in the spectrum of antimicrobial drug resistance pattern of uropathogens isolated from hospitals and community patients with urinary tract infections in Tumkur and Bangalore. Int J Biol Med Res. 2011; 2 (2): 504-7.
29. Giwa FJ, Ige OT, Haruna DM, Yaqub Y, Lamido TZ, Usman SY. Extended-spectrum beta-lactamase production and antimicrobial susceptibility pattern of uropathogens in a tertiary hospital in Northwestern Nigeria. Ann Trop Pathol. 2018; 9 (1): 11-6. [DOI:10.4103/atp.atp_39_17]
30. Hussain A, Mirza IA, Ikra A, Sattar A, Ali S, Khan IU. In vitro sensitivity of chloramphenicol against extended spectrum beta lactamase producing Gram negative bacteria. Infect Dis J Pak. 2012; 21 (4): 503-6.
31. Cho S-Y, Choi S-M, Park SH, Lee D-G, Choi J-H, Yoo J-H. Amikacin therapy for urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Korean J Intern Med. 2016; 31 (1): 156-61. [DOI:10.3904/kjim.2016.31.1.156]
32. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008; 17 (1): 32-6. [DOI:10.1159/000109587]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.