Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 142-147 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi A B, Nakhaei Moghaddam M, Forghanifard M M, Yousefi E. Detection of blaOXA-10 and blaOXA-48 Genes in Pseudomonas aeruginosa Clinical Isolates by Multiplex PCR. JoMMID. 2021; 9 (3) :142-147
URL: http://jommid.pasteur.ac.ir/article-1-350-en.html
Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:   (178 Views)
Introduction: The rapidly increasing extended-spectrum β-lactamase-producing Pseudomonas aeruginosa is a threat to health. This study aims to detect the rpoD gene and blaOXA-10 and blaOXA-48 genes in imipenem-resistant P. aeruginosa clinical isolates simultaneously by multiplex polymerase chain reaction. Methods: Eighty-five culture plates were collected from patients suspected of Pseudomonas spp infection in Ghaem Hospital and Shahid Shourideh Clinic in Mashhad from January to February 2021. After biochemical identification of P. aeruginosa isolates and the measurement of antibiotic resistance, blaOXA-10, blaOXA-48, and rpoD genes were investigated by multiplex polymerase chain reaction in the imipenem-resistant isolates. Results: Of 82 P. aeruginosa isolates, 38 (46.34%) were resistant to imipenem, with the highest percentage to carbenicillin (69.5%). All imipenem-resistant P. aeruginosa isolates were confirmed by multiplex PCR using the primers that targeted the rpoD gene. Also, in multiplex PCR, among imipenem-resistant isolates, 10 (26.3%) and 9 (23.6%) had blaOXA-10 and blaOXA-48 genes, respectively. Conclusion: In addition to molecular identification of P. aeruginosa, the present study simultaneously detected blaOXA-10 and blaOXA-48 genes by multiplex PCR. Application of this multiplex PCR, rapid identification of patients, and timely treatment can reduce the β-lactamase gene prevalence in P. aeruginosa clinical isolates.
Full-Text [PDF 1397 kb]   (53 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/04/19 | Accepted: 2021/09/19 | Published: 2021/10/12

1. Bahrami M, Mohammadi-Sichani M, Vajihe K. Prevalence of SHV, TEM, CTX-M and OXA-48 β-Lactamase genes in clinical isolates of Pseudomonas aeruginosa in Bandar-Abbas, Iran. Avicenna J Clin Microbiol Infect. 2018; 5 (4): 86-90. [DOI:10.34172/ajcmi.2018.18]
2. Ullah W, Qasim M, Rahman H, Jie Y, Muhammad N. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. J Chin Med Assoc. 2017; 80 (3): 173-7. [DOI:10.1016/j.jcma.2016.08.011]
3. Vural E, Delialioglu N, Ulger ST, Emekdas G, Serin MS. Phenotypic and molecular detection of the metallo-beta-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from clinical samples. Jundishapur J Microbiol. 2020; 13 (2): e90034. [DOI:10.5812/jjm.90034]
4. Athreya AG, Shareef MI, Gopinath SM. Silver Nanoparticles from Cow's Milk to Combat Multidrug-resistant gram-negative bacteria from clinical isolates. Proc Natl Acad Sci India Sect B Biol Sci. 2020; 90 (4): 861-71. [DOI:10.1007/s40011-019-01160-3]
5. Potvin E, Sanschagrin F, Levesque R.C. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev. 2008; 32 (1): 38-55. [DOI:10.1111/j.1574-6976.2007.00092.x]
6. Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Res Int. 2018; 2018: 1-14. [DOI:10.1155/2018/9519718]
7. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase inhibitors in the 21st century. J Mol Biol. 2019; 431 (18): 3472-500. [DOI:10.1016/j.jmb.2019.04.002]
8. Antunes NT, Fisher JF. Acquired class D β-Lactamases. Antibiotics (Basel). 2014; 3 (3): 398-434. [DOI:10.3390/antibiotics3030398]
9. Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014; 27 (2): 241-63. [DOI:10.1128/CMR.00117-13]
10. Bhuiya M, Sarkar MKI, Sohag MH, Ali H, Roy CK, Akther L, et al. Enumerating antibiotic susceptibility patterns of Pseudomonas aeruginosa isolated from different sources in Dhaka city. Open Microbiol J. 2018; 12: 172-80. [DOI:10.2174/1874285801812010172]
11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: Document M100. CLSI, Wayne, PA, USA, 2018.
12. Pakbaten Toupkanlou S, Najar Peerayeh S, Pirhajati Mahabadi R. Class A, and D Extended-Spectrum β-Lactamases in imipenem resistant Pseudomonas aeruginosa isolated from burn patients in Iran. Jundishapur J Microbiol. 2015; 8 (8): e59888. [DOI:10.5812/jjm.18352v2]
13. Farajnia, S. OXA-10, and OXA-2 ESBLs among multidrug-resistant Pseudomonas aeruginosa isolates from North West of Iran. Prog Biol Sci. 2017; 7 (2): 191-7.
14. Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2001; 45 (2): 480-4. [DOI:10.1128/AAC.45.2.480-484.2001]
15. Tarafdar F, Jafari, B, Azimi. Evaluating the antimicrobial resistance patterns and molecular frequency of blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020; 37: 100686. [DOI:10.1016/j.nmni.2020.100686]
16. Gutierrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007; 51 (12): 4329-35. [DOI:10.1128/AAC.00810-07]
17. Aria M, Farajnia S, Ahdi Khosroshahi S, Naghilli B, Farajnia H, Sanjari A, et al. OXA-10 and OXA-2 ESBLs among multidrug-resistant Pseudomonas aeruginosa isolates from North West of Iran. Prog Biol Sci. 2017; 7 (2): 191-7. [DOI:10.5812/jjm.13368]
18. Sameni N, Shahbeik M, Dabiri H. Investigating the presence of type IV pilin subgenus in Pseudomonas aeruginosa isolated from clinical and non-clinical samples. Iran J Med Microbiol. 2019; 13 (3): 164-74. [DOI:10.30699/ijmm.13.3.164]
19. Kaluzny K, Abeyrathne PD, Lam JS. Coexistence of two distinct versions of O-antigen polymerase, Wzy-alpha, and Wzy-beta, in Pseudomonas aeruginosa serogroup O2 and their contributions to cell surface diversity. J Bacteriol. 2007; 189 (11): 4141-52 [DOI:10.1128/JB.00237-07]
20. Maurya AP, Dhar D, Basumatary MK, Paul D, Ingti B, Choudhury D, et al. Expansion of highly stable bla OXA-10 β-lactamase family within diverse host range among nosocomial isolates of Gram-negative bacilli within a tertiary referral hospital of Northeast India. BMC Res Notes. 2017; 10 (1): 145. [DOI:10.1186/s13104-017-2467-2]
21. Hosseinzadeh Z, Sedigh Ebrahim-Saraie H, Sarvari J, Mardaneh J, Dehghani B, Rokni-Hosseini SMH, et al. Emerge of bla NDM-1 and bla OXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran. J Chin Med Assoc. 2018. 81 (6); 536-40. [DOI:10.1016/j.jcma.2017.08.015]
22. Adjei C.B, Govinden U, Moodley K, Essack S. Molecular characterization of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa. S Afr J Infect Dis. 2018; 33 (2): 38-41. [DOI:10.4102/sajid.v33i2.19]
23. Rodrigues YC, Furlaneto IP, Maciel AHP, Quaresma AJPG, de Matos ECO, Conceiçao ML, et al. High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. PLoS One. 2020; 15 (9): e0238741. [DOI:10.1371/journal.pone.0238741]
24. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017; 7: 39. [DOI:10.3389/fcimb.2017.00039]
25. Cornaglia G, Mazzariol A, Lauretti L, Rossolini GM, Fontana R. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase. Clin Infect Dis. 2000; 31 (5): 1119-25. [DOI:10.1086/317448]
26. Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of Metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2004; 48 (2): 131-5. [DOI:10.1016/j.diagmicrobio.2003.09.005]
27. Gu B, Tong M, Zhao W, Liu G, Ning M, Pan S. Prevalence and characterization of class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J Clin Microbiol. 2007; 45 (1): 241-3. [DOI:10.1128/JCM.01318-06]
28. Uma Karthika R, Srinivasa Rao R, Sahoo S, Shashikala P, Kanungo R, Jayachandran S, et al. Phenotypic and genotypic assays for detecting the prevalence of metallo-beta-lactamases in clinical isolates of Acinetobacter baumannii from a South Indian tertiary care hospital. J Med Microbiol. 2009; 58 (Pt 4): 430-5. [DOI:10.1099/jmm.0.002105-0]
29. Manikal VM, Landman D, Saurina G, Oydna E, Lal H, Quale J. Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage. Clin Infect Dis. 2000; 31 (1): 101-6. [DOI:10.1086/313902]
30. Zaranza AV, Morais FC, do Carmo MS, de Mendonça Marques A, Andrade-Monteiro C, et al. Antimicrobial susceptibility, biofilm production and adhesion to HEp-2 cells of Pseudomonas aeruginosa strains isolated from clinical samples. J Biomat Nanobiotechnol. 2013; 4 (1): 98. [DOI:10.4236/jbnb.2013.41013]
31. Renata Gomes Franco M, Hehl CaiaffaFilho H, Nascimento Burattini M, Rossi F. Metallo- beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clin Sci. 2010; 65 (9): 825-9. [DOI:10.1590/S1807-59322010000900002]
32. Kateete DP, Nakanjako R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus. 2016; 5 (1): 1308. [DOI:10.1186/s40064-016-2986-7]
33. Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR, Yan JJ, et al. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol. 2016; 16 (1): 107. [DOI:10.1186/s12866-016-0719-2]
34. Labaste F, Grossac J, Bounes FV, Conil JM, Ruiz S, Seguin T, et al. Risk factors for acquisition of carbapenem-resistance during treatment with carbapenem in the intensive care unit: a prospective study. Eur J Clin Microbiol Infect Dis. 2019; 38 (12): 1-9. [DOI:10.1007/s10096-019-03644-6]
35. Girard L, Lood C, Rokni-Zadeh H, van Noort V, Lavigne R, De Mot R. Reliable Identification of Environmental Pseudomonas Isolates Using the rpoD Gene. Microorganisms. 2020; 8 (8): 1166. [DOI:10.3390/microorganisms8081166]
36. Sanchez D, Matthijs S, Gomila M, Tricot C, Mulet M, Garcia-Valdes E, et al. rpoD gene pyrosequencing for the assessment of Pseudomonas Diversity in a water sample from the Woluwe River. Appl Environ Microbiol. 2014; 80 (15): 4738-44. [DOI:10.1128/AEM.00412-14]
37. Galdino ACM, Viganor L, de Castro AA, da Cunha EFF, Mello TP, Mattos LM, et al. Disarming Pseudomonas aeruginosa virulence by the inhibitory action of 1,10-phenanthroline-5,6-dione-based compounds: elastase B (LasB) as a chemotherapeutic target. Front Microbiol. 2019; 10: 1701. [DOI:10.3389/fmicb.2019.01701]
38. Danel F, Hall LM, Gur D, Livermore DM. OXA-14, another extended spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995; 39 (8): 1881-4. [DOI:10.1128/AAC.39.8.1881]
39. Shakibaie MR, Shahcheraghi F, Hashemi A, Adeli NS. Detection of TEM, SHV, and PER type extended-spectrum β-lactamase genes among clinical strains of Pseudomonas aeruginosa isolated from burnt patients at Shafa-Hospital, Kerman, Iran. Iran J Basic Med Sci. 2008; 11 (2): 104-11.

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.