Volume 7, Issue 1 And 2 (1-2019)                   JoMMID 2019, 7(1 And 2): 37-43 | Back to browse issues page

XML Print

Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (2541 Views)
Introduction: The human immunodeficiency virus type 1 (HIV-1) Nef regulatory protein is known as a candidate for the design of therapeutic HIV DNA and protein vaccines. One of the limitations of these vaccines is the inability of DNA and protein to pass through the cell membrane. Various delivery systems have been developed to transfer DNA and protein into cells. Cell penetrating systems such as MPG and Cylop-1 are among delivery systems, which can deliver DNA and protein cargoes into the cells, respectively. Methods: In this study, we produced the recombinant Nef protein in Escherichia coli expression system. Then, the formation of CPP/DNA and CPP/protein nanoparticles was confirmed by agarose gel retardation, scanning electron microscope (SEM), Zetasizer and SDS-PAGE, and their stability was evaluated against nucleases and proteases. Finally, the delivery of the nanoparticles into HEK-293T cells was assessed by fluorescent microscopy, flow cytometry, and western blotting. Results: Our data confirmed the formation of stable nanoparticles through non-covalent bonds with a diameter of less than 200 nm. Moreover, the results of fluorescence microscopy, flow cytometry, and western blotting demonstrated that these CPPs could successfully deliver the Nef protein and DNA into HEK-293T cells. Conclusion: Our results indicated that the MPG and CyLoP-1 CPPs are suitable candidates for the delivery of DNA and protein cargoes into mammalian cells, respectively.
Full-Text [PDF 667 kb]   (534 Downloads)    
Type of Study: Original article | Subject: Other
Received: 2019/07/19 | Accepted: 2019/09/1 | Published: 2019/11/3

1. 1. Homepage [Internet]. Unaids.org. 2017 [cited 13 July 2019]. Available from: http://www.unaids.org/en/
2. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection [Internet]. World Health Organization. 2016 [cited 13 July 2019]. Available from: https://www.who.int/hiv/pub/arv/arv-2016/en/
3. Collins D, Collins K. HIV-1 accessory proteins adapt cellular adaptors to facilitate immune evasion. PLoS Pathogens. 2014; 10 (1): e1003851. [DOI:10.1371/journal.ppat.1003851]
4. Wu Y, Marsh J. Early transcription from nonintegrated DNA in human immunodeficiency virus infection. J Virol. 2003; 77 (19): 10376-82. [DOI:10.1128/JVI.77.19.10376-10382.2003]
5. Deacon N, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Ellett A, et al. Genomic structure of an attenuated Quasi Species of HIV-1 from a blood transfusion donor and recipients. Science. 1995; 270 (5238): 988-991. [DOI:10.1126/science.270.5238.988]
6. Fackler O, Baur A. Live and Let Die. Nef functions beyond HIV replication. Immunity. 2002; 16 (4): 493-7. [DOI:10.1016/S1074-7613(02)00307-2]
7. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci. 2017; 38 (4): 406-24. [DOI:10.1016/j.tips.2017.01.003]
8. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al. Arginine-rich Peptides. J Biol Chem. 2000; 276 (8): 5836-40. [DOI:10.1074/jbc.M007540200]
9. Matsson P, Doak B, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016; 101: 42-61. [DOI:10.1016/j.addr.2016.03.013]
10. Kauffman W, Fuselier T, He J, Wimley W. Mechanism Matters: A taxonomy of cell penetrating peptides. Trends Biochem Sci. 2015; 40 (12): 749-64. [DOI:10.1016/j.tibs.2015.10.004]
11. Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014; 174: 126-136. [DOI:10.1016/j.jconrel.2013.11.020]
12. Ponnappan N, Budagavi D, Chugh A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta (BBA)- Biomembranes. 2017; 1859 (2): 167-176. [DOI:10.1016/j.bbamem.2016.11.002]
13. Jha D, Mishra R, Gottschalk S, Wiesmüller K, Ugurbil K, Maier M et al. CyLoP-1: A novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjug Chem. 2011; 22 (3): 319-328. [DOI:10.1021/bc100045s]
14. Jafarzade B, Bolhassani A, Sadat S, Yaghobi R. Delivery of HIV-1 Nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. Int J Pept Res Ther. 2016; 23(1):145-153. [DOI:10.1007/s10989-016-9547-3]
15. Motevalli F, Bolhassani A, Hesami S, Shahbazi S. Supercharged green fluorescent protein delivers HPV16E7 DNA and protein into mammalian cells in vitro and in vivo. Immunol Lett. 2018; 194: 29-39. [DOI:10.1016/j.imlet.2017.12.005]
16. Kadkhodayan S, Jafarzade B, Sadat S, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett. 2017; 188: 38-45. [DOI:10.1016/j.imlet.2017.06.003]
17. Leal L, Lucero C, Gatell J, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines. 2017; 16 (6): 587-600. [DOI:10.1080/14760584.2017.1322513]
18. Mann J, Ndung'u T. HIV-1 vaccine immunogen design strategies. Virol J. 2015; 12 (1): 3. [DOI:10.1186/s12985-014-0221-0]
19. Abraham L, Fackler O. HIV-1 Nef: A multifaceted modulator of T cell receptor signaling. Cell Commun Signal. 2012; 10 (1): 39. [DOI:10.1186/1478-811X-10-39]
20. Lema D, Garcia A, De Sanctis J. HIV vaccines: A brief overview. Scand J Immunol. 2014; 80 (1): 1-11. [DOI:10.1111/sji.12184]
21. Veldhoen S, Laufer S, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008; 9 (7): 1276-1320. [DOI:10.3390/ijms9071276]
22. Gros E, Deshayes S, Morris M, Aldrian-Herrada G, Depollier J, Heitz F et al. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta Biomembr. 2006; 1758 (3): 384-393. [DOI:10.1016/j.bbamem.2006.02.006]
23. Simeoni F. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003; 31 (11): 2717-24. [DOI:10.1093/nar/gkg385]
24. Karjoo Z, McCarthy H, Patel P, Nouri F, Hatefi A. Systematic engineering of uniform, highly efficient, targeted and shielded viral-mimetic nanoparticles. Small. 2013; 9 (16): 2774-83. [DOI:10.1002/smll.201300077]
25. Yoo J, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev. 2011; 63 (14-15): 1247-56. [DOI:10.1016/j.addr.2011.05.004]
26. Laufer S, Restle T. Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: Quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des. 2008; 14 (34): 3637-55. [DOI:10.2174/138161208786898806]
27. Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm. 2014; 11 (3): 683-696. [DOI:10.1021/mp400353n]
28. Rahmat D, Khan M, Shahnaz G, Sakloetsakun D, Perera G, Bernkop-Schnürch A. Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency. Biomaterials. 2012; 33 (7): 2321-6. [DOI:10.1016/j.biomaterials.2011.11.046]
29. Sabouri-Rad S, Oskuee R, Mahmoodi A, Gholami L, Malaekeh-Nikouei B. The effect of cell penetrating peptides on transfection activity and cytotoxicity of polyallylamine. BioImpacts. 2017; 7 (3): 139-145. [DOI:10.15171/bi.2017.17]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.