1. 1. Homepage [Internet]. Unaids.org. 2017 [cited 13 July 2019]. Available from: http://www.unaids.org/en/
2. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection [Internet]. World Health Organization. 2016 [cited 13 July 2019]. Available from: https://www.who.int/hiv/pub/arv/arv-2016/en/
3. Collins D, Collins K. HIV-1 accessory proteins adapt cellular adaptors to facilitate immune evasion. PLoS Pathogens. 2014; 10 (1): e1003851. [
DOI:10.1371/journal.ppat.1003851]
4. Wu Y, Marsh J. Early transcription from nonintegrated DNA in human immunodeficiency virus infection. J Virol. 2003; 77 (19): 10376-82. [
DOI:10.1128/JVI.77.19.10376-10382.2003]
5. Deacon N, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Ellett A, et al. Genomic structure of an attenuated Quasi Species of HIV-1 from a blood transfusion donor and recipients. Science. 1995; 270 (5238): 988-991. [
DOI:10.1126/science.270.5238.988]
6. Fackler O, Baur A. Live and Let Die. Nef functions beyond HIV replication. Immunity. 2002; 16 (4): 493-7. [
DOI:10.1016/S1074-7613(02)00307-2]
7. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci. 2017; 38 (4): 406-24. [
DOI:10.1016/j.tips.2017.01.003]
8. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K et al. Arginine-rich Peptides. J Biol Chem. 2000; 276 (8): 5836-40. [
DOI:10.1074/jbc.M007540200]
9. Matsson P, Doak B, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016; 101: 42-61. [
DOI:10.1016/j.addr.2016.03.013]
10. Kauffman W, Fuselier T, He J, Wimley W. Mechanism Matters: A taxonomy of cell penetrating peptides. Trends Biochem Sci. 2015; 40 (12): 749-64. [
DOI:10.1016/j.tibs.2015.10.004]
11. Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014; 174: 126-136. [
DOI:10.1016/j.jconrel.2013.11.020]
12. Ponnappan N, Budagavi D, Chugh A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta (BBA)- Biomembranes. 2017; 1859 (2): 167-176. [
DOI:10.1016/j.bbamem.2016.11.002]
13. Jha D, Mishra R, Gottschalk S, Wiesmüller K, Ugurbil K, Maier M et al. CyLoP-1: A novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjug Chem. 2011; 22 (3): 319-328. [
DOI:10.1021/bc100045s]
14. Jafarzade B, Bolhassani A, Sadat S, Yaghobi R. Delivery of HIV-1 Nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. Int J Pept Res Ther. 2016; 23(1):145-153. [
DOI:10.1007/s10989-016-9547-3]
15. Motevalli F, Bolhassani A, Hesami S, Shahbazi S. Supercharged green fluorescent protein delivers HPV16E7 DNA and protein into mammalian cells in vitro and in vivo. Immunol Lett. 2018; 194: 29-39. [
DOI:10.1016/j.imlet.2017.12.005]
16. Kadkhodayan S, Jafarzade B, Sadat S, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett. 2017; 188: 38-45. [
DOI:10.1016/j.imlet.2017.06.003]
17. Leal L, Lucero C, Gatell J, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines. 2017; 16 (6): 587-600. [
DOI:10.1080/14760584.2017.1322513]
18. Mann J, Ndung'u T. HIV-1 vaccine immunogen design strategies. Virol J. 2015; 12 (1): 3. [
DOI:10.1186/s12985-014-0221-0]
19. Abraham L, Fackler O. HIV-1 Nef: A multifaceted modulator of T cell receptor signaling. Cell Commun Signal. 2012; 10 (1): 39. [
DOI:10.1186/1478-811X-10-39]
20. Lema D, Garcia A, De Sanctis J. HIV vaccines: A brief overview. Scand J Immunol. 2014; 80 (1): 1-11. [
DOI:10.1111/sji.12184]
21. Veldhoen S, Laufer S, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008; 9 (7): 1276-1320. [
DOI:10.3390/ijms9071276]
22. Gros E, Deshayes S, Morris M, Aldrian-Herrada G, Depollier J, Heitz F et al. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta Biomembr. 2006; 1758 (3): 384-393. [
DOI:10.1016/j.bbamem.2006.02.006]
23. Simeoni F. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003; 31 (11): 2717-24. [
DOI:10.1093/nar/gkg385]
24. Karjoo Z, McCarthy H, Patel P, Nouri F, Hatefi A. Systematic engineering of uniform, highly efficient, targeted and shielded viral-mimetic nanoparticles. Small. 2013; 9 (16): 2774-83. [
DOI:10.1002/smll.201300077]
25. Yoo J, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev. 2011; 63 (14-15): 1247-56. [
DOI:10.1016/j.addr.2011.05.004]
26. Laufer S, Restle T. Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: Quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des. 2008; 14 (34): 3637-55. [
DOI:10.2174/138161208786898806]
27. Mann A, Shukla V, Khanduri R, Dabral S, Singh H, Ganguli M. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents. Mol Pharm. 2014; 11 (3): 683-696. [
DOI:10.1021/mp400353n]
28. Rahmat D, Khan M, Shahnaz G, Sakloetsakun D, Perera G, Bernkop-Schnürch A. Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency. Biomaterials. 2012; 33 (7): 2321-6. [
DOI:10.1016/j.biomaterials.2011.11.046]
29. Sabouri-Rad S, Oskuee R, Mahmoodi A, Gholami L, Malaekeh-Nikouei B. The effect of cell penetrating peptides on transfection activity and cytotoxicity of polyallylamine. BioImpacts. 2017; 7 (3): 139-145. [
DOI:10.15171/bi.2017.17]