Volume 5, Issue 3 And 4 (7-2017)                   JoMMID 2017, 5(3 And 4): 47-50 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tabasi M, Azizian R, Eskandarion M R, Habibi M, Asadi Karam M R. Detection of Metallo-β-Lactamases (MBLs) Producing Pseudomonas aeruginosa Isolates in Tehran Hospitals, Iran. JoMMID 2017; 5 (3 and 4) :47-50
URL: http://jommid.pasteur.ac.ir/article-1-157-en.html
Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (5215 Views)
Introduction: The strains of Pseudomonas aeruginosa are known as an opportunistic pathogen that can cause infections in humans and animals. Metallo-β-lactamases (MBLs) are the most significant factors of resistance to carbapenem antibiotics in these bacteria. This study was designed to identify the MBLs producing P. aeruginosa isolates in three hospitals of Tehran, Iran. Methods: Totally, we obtained 665 samples from patients hospitalized in three hospitals in Tehran, Iran. Antibiotic-susceptibility test of the P. aeruginosa isolates was done based on Kirby-Bauer disk diffusion test. The Minimum Inhibitory Concentration (MIC) of the isolates was performed using agar dilution method, and IPM-EDTA test identified MBL producing isolates. Results: Among the examined isolates, 473 (71.1%) were P. aeruginosa. Among these, 306 (64.7%) were resistant to imipenem, and 289 (94.5%) were MBL producers. Furthermore, the resistance rate of the isolates to other antibiotics was amikacin (26%), tobramycin (24.95%), ceftazidime (23.05%), gentamicin (22.83%), carbenicillin (21.14%), and ceftizoxime (18.19%). The MICs of imipenem and ceftazidime for the majority of the isolates were 4 µg/ml and ˃128 µg/ml, respectively. Conclusion: This study confirmed previous reports on the increased rate of MBL-mediated resistance in P. aeruginosa isolates worldwide. Therefore, detection of resistance patterns for these isolates, particularly MBLs, is necessary for prevention and control of Pseudomonas associated infections.
Full-Text [PDF 223 kb]   (2122 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2018/03/5 | Accepted: 2018/03/14 | Published: 2018/04/18

References
1. 1. Arvanitidou M, Katikaridou E, Douboyas J, Tsakris A. Prognostic factors for nosocomial bacteraemia outcome: a prospective study in a Greek teaching hospital. J Hosp Infect. 2005; 61 (3): 219-24. [DOI:10.1016/j.jhin.2005.03.006] [PMID]
2. 2. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2003; 100 (14): 8484-9. [DOI:10.1073/pnas.0832438100] [PMID] [PMCID]
3. 3. Bielecki P, Glik J, Kawecki M, dos Santos VAM. Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol lett. 2008; 30 (5): 777-90. [DOI:10.1007/s10529-007-9620-2] [PMID]
4. 4. Aguilar-Rodea P, Zú-iga G, Rodríguez-Espino BA, Cervantes ALO, Arroyo AEG, Moreno-Espinosa S, et al. Identification of extensive drug resistant Pseudomonas aeruginosa strains: New clone ST1725 and high-risk clone ST233. PLoS One. 2017; 12 (3): 1-16. [DOI:10.1371/journal.pone.0172882] [PMID] [PMCID]
5. 5. Lari AR, Honar HB, Alaghehbandan R. Pseudomonas infections in Tohid Burn Center, Iran. Burns. 1998; 24 (7): 637-41. [DOI:10.1016/S0305-4179(98)00090-4]
6. 6. Laupland KB, Parkins MD, Church DL, Gregson DB, Louie TJ, Conly JM, et al. Population‐Based Epidemiological Study of Infections Caused by Carbapenem‐Resistant Pseudomonas aeruginosa in the Calgary Health Region: Importance of Metallo‐β‐Lactamase (MBL)–Producing Strains. J Infect Dis. 2005; 192 (9): 1606-12. [DOI:10.1086/444469] [PMID]
7. 7. Huang Y-T, Chang S-C, Lauderdale T-L, Yang AJ, Wang J-T. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-β-lactamase genes in Taiwan. Diagn Microbiol Infect Dis. 2007; 59 (2): 211-6. [DOI:10.1016/j.diagmicrobio.2007.01.009] [PMID]
8. 8. Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S, et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol. 1996; 34 (12): 2909-13. [PMID] [PMCID]
9. 9. Henrichfreise B, Irith W, Kimberley JS, Bernd W. Detection of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa from Germany. Antimicrob Agents Chemother. 2005; 49 (4): 1668-9. [DOI:10.1128/AAC.49.4.1668-1669.2005] [PMID] [PMCID]
10. 10. Mendiratta D, Deotale V, Narang P. Metallo-beta-lactamase producing Pseudomonas aeruginosa in a hospital from a rural area. Indian J Med Res. 2005; 121: 701-3. [PMID]
11. 11. Pitout JD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J Clin Microbiol. 2005; 43 (7): 3129-35. [DOI:10.1128/JCM.43.7.3129-3135.2005] [PMID] [PMCID]
12. 12. Queenan A, Bush K. Carbapenemases: the Versatile β-Lactamases. Clin Microbiol Rev. 2007; 20 (3): 440-58. [DOI:10.1128/CMR.00001-07] [PMID] [PMCID]
13. 13. Sacha P, Wieczorek P, Hauschild T, Zórawski M, Olszańska D, Tryniszewska E. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol. 2008; 46 (2): 137-42. [DOI:10.2478/v10042-008-0020-9] [PMID]
14. 14. Nasrin T, Jilani MSA, Barai L, Haq JA. Metallo-ß-Lactamase producing Pseudomonas species in a tertiary care hospital of Dhaka city. Bangladesh J Med Microbiol. 2010; 4 (1): 43-5.
15. 15. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 18th Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
16. 16. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002; 40 (10): 3798-801. [DOI:10.1128/JCM.40.10.3798-3801.2002] [PMID] [PMCID]
17. 17. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns. 2009; 35 (7): 1020-5. [DOI:10.1016/j.burns.2009.01.005] [PMID]
18. 18. Hirakata Y, Yamaguchi T, Nakano M, Izumikawa K, Mine M, Aoki S, et al. Clinical and Bacteriological Characteristics of IMP-Type Metallo-b-Lactamase-Producing Pseudomonas aeruginosa. Clin infect Dis. 2003; 37 (1): 26-32. [DOI:10.1086/375594] [PMID]
19. 19. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011; 11 (5): 381-93. [DOI:10.1016/S1473-3099(11)70056-1]
20. 20. Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns. 2006; 32 (3): 343-7. [DOI:10.1016/j.burns.2005.10.017] [PMID]
21. 21. Khosravi AD, Mihani F. Detection of metallo-β-lactamase–producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2008; 60 (1): 125-8. [DOI:10.1016/j.diagmicrobio.2007.08.003] [PMID]
22. 22. van der Bij AK, Mol M, van Westreenen M, Goessens WH, Pitout JD. The laboratory diagnosis of Pseudomonas aeruginosa that produce metallo-beta-lactamases in a Dutch tertiary care centre. Scand J Infect Dis. 2011; 43 (8): 596-602. [DOI:10.3109/00365548.2011.574148] [PMID]
23. 23. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosa strains producing metallo beta lactamases from infections in burned patients and identification of blaIMP and blaVIM genes by PCR. Iran J Medical Microbiol. 2007; 1 (1): 23-31.
24. 24. Sadeghi A, Rahimi B, Shojapour M. Molecular detection of metallo-β-lactamase genes blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2 and blaSPM-1 in Pseudomonas aeruginosa isolated from hospitalized patients in Markazi province by Duplex-PCR. Afr J Microbiol Res. 2012; 6 (12): 2965-9.
25. 25. Mirbagheri SZ, Meshkat Z, Naderinasab M, Rostami S, Nabavinia MS, Rahmati M. Study on imipenem resistance and prevalence of blaVIM1 and blaVIM2 metallo-beta lactamases among clinical isolates of from Mashhad, Northeast of Iran. Iran J Microbiol. 2015; 7 (2): 72-8. [PMID] [PMCID]
26. 26. Oh EJ, Lee S, Park YJ, Park JJ, Park K, Kim SI, et al. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-beta-lactamase. J Microbiol Methods. 2003; 54 (3): 411-8. [DOI:10.1016/S0167-7012(03)00090-3]
27. 27. Mansour W, Poirel L, Bettaieb D, Bouallegue O, Boujaafar N, Nordmann P. Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates in Tunisia. Diagn Microbiol Infect Dis. 2009; 64 (4): 458-61. [DOI:10.1016/j.diagmicrobio.2009.04.003] [PMID]
28. 28. Irfan S, Zafar A, Guhar D, Ahsan T, Hasan R. Metallo-beta-lactamase-producing clinical isolates of Acinetobacter species and Pseudomonas aeruginosa from intensive care unit patients of a tertiary care hospital. Indian J Med Microbiol. 2008; 26 (3): 243-5. [DOI:10.4103/0255-0857.42035] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.