1. Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol. 2010; 300 (6): 357-62. [
DOI:10.1016/j.ijmm.2010.04.002] [
PMID] [
PMCID]
2. Guliy OI, Evstigneeva SS. Bacteria- and phage-derived proteins in phage infection. Front Biosci (Landmark Ed). 2025; 30 (2): 24478. [
DOI:10.31083/FBL24478] [
PMID]
3. Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013; 4 (5): 354-65. [
DOI:10.4161/viru.24498] [
PMID] [
PMCID]
4. Oliveira H, Melo LD, Santos SB, Nóbrega FL, Ferreira EC, Cerca N, et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol. 2013; 87 (8): 4558-70. [
DOI:10.1128/JVI.03277-12] [
PMID] [
PMCID]
5. Tišáková L, Godány A. Bacteriophage endolysins and their use in biotechnological processes. J Microbiol Biotechnol Food Sci. 2014; 3 (2): 164-70.
6. Lu Y, Wang Y, Wang J, Zhao Y, Zhong Q, Li G, et al. Phage endolysin LysP108 showed promising antibacterial potential against methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol. 2021; 11: 668430. [
DOI:10.3389/fcimb.2021.668430] [
PMID] [
PMCID]
7. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. Endolysins as antimicrobials. Adv Virus Res. 2012; 83: 299-365. [
DOI:10.1016/B978-0-12-394438-2.00007-4] [
PMID]
8. Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007; 86 (11): 2466-71. [
DOI:10.3382/ps.2007-00249] [
PMID]
9. Bezerra W, Horn R, Silva I, Teixeira R, Lopes E, Albuquerque Á, et al. Antibiotics in the poultry industry: a review on antimicrobial resistance. Arch Zootec. 2017; 66 (254): 301-7.
10. Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, et al. Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr. 2018; 4 (2): 170-8. [
DOI:10.1016/j.aninu.2018.03.002] [
PMID] [
PMCID]
11. Sadighara P, Rostami S, Shafaroodi H, Sarshogi A, Mazaheri Y, Sadighara M. The effect of residual antibiotics in food on intestinal microbiota: a systematic review. Front Sustain Food Syst. 2023; 7: 1163885. [
DOI:10.3389/fsufs.2023.1163885]
12. Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol. 2022; 13 (1): 148. [
DOI:10.1186/s40104-022-00786-0] [
PMID] [
PMCID]
13. Chlebicz A, Śliżewska K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int J Environ Res Public Health. 2018; 15 (5): 863. [
DOI:10.3390/ijerph15050863] [
PMID] [
PMCID]
14. Jamal M, Shareef M, Sajid S. Lincomycin and tetracycline resistance in poultry. Review. Matrix Sci Pharm. 2017; 1 (1): 33-8. [
DOI:10.26480/msp.01.2017.33.38]
15. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015; 112 (18): 5649-54. [
DOI:10.1073/pnas.1503141112] [
PMID] [
PMCID]
16. Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health. 2021; 3 (1): 32-8. [
DOI:10.1016/j.bsheal.2020.09.004]
17. Miranda JM, Rodríguez JA, Galan-Vidal CA. Simultaneous determination of tetracyclines in poultry muscle by capillary zone electrophoresis. J Chromatogr A. 2009; 1216 (15): 3366-71. [
DOI:10.1016/j.chroma.2009.01.105] [
PMID]
18. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001; 65 (2): 232-60. [
DOI:10.1128/MMBR.65.2.232-260.2001] [
PMID] [
PMCID]
19. Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr. 2023; 63 (27): 8919-38. [
DOI:10.1080/10408398.2022.2059442] [
PMID]
20. Soontarach R, Srimanote P, Voravuthikunchai SP, Chusri S. Antibacterial and anti-biofilm efficacy of endolysin LysAB1245 against a panel of important pathogens. Pharmaceuticals. 2024; 17 (2): 155. [
DOI:10.3390/ph17020155] [
PMID] [
PMCID]
21. Tamai E, Yoshida H, Sekiya H, Nariya H, Miyata S, Okabe A, et al. X‐ray structure of a novel endolysin encoded by episomal phage phiSM 101 of Clostridium perfringens. Mol Microbiol. 2014; 92 (2): 326-37. [
DOI:10.1111/mmi.12559] [
PMID]
22. Zimmer M, Vukov N, Scherer S, Loessner MJ. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol. 2002; 68 (11): 5311-7. [
DOI:10.1128/AEM.68.11.5311-5317.2002] [
PMID] [
PMCID]
23. Swift SM, Seal BS, Garrish JK, Oakley BB, Hiett K, Yeh HY, et al. A thermophilic phage endolysin fusion to a Clostridium perfringens specific cell wall binding domain creates an anti-Clostridium antimicrobial with improved thermostability. Viruses. 2015; 7 (6): 3019-34. [
DOI:10.3390/v7062758] [
PMID] [
PMCID]
24. Gervasi T, Horn N, Wegmann U, Dugo G, Narbad A, Mayer MJ. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol. 2014; 98 (6): 2495-505. [
DOI:10.1007/s00253-013-5128-y] [
PMID] [
PMCID]
25. Lu R, Liu B, Wu L, Bao H, García P, Wang Y, et al. A broad-spectrum phage endolysin (LysCP28) able to remove biofilms and inactivate Clostridium perfringens strains. Foods. 2023; 12 (2): 411. [
DOI:10.3390/foods12020411] [
PMID] [
PMCID]
26. Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017; 14 (1): 179. [
DOI:10.1186/s12985-017-0849-7] [
PMID] [
PMCID]
27. Ding Y, Zhang Y, Huang C, Wang J, Wang X. An endolysin LysSE24 by bacteriophage LPSE1 confers specific bactericidal activity against multidrug-resistant Salmonella strains. Microorganisms. 2020; 8 (5): 737. [
DOI:10.3390/microorganisms8050737] [
PMID] [
PMCID]
28. Zampara A, Sørensen MCH, Gencay YE, Grimon D, Kristiansen SH, Jørgensen LS, et al. Developing innolysins against campylobacter jejuni using a novel prophage receptor-binding protein. Front Microbiol. 2021; 12: 619028. [
DOI:10.3389/fmicb.2021.619028] [
PMID] [
PMCID]
29. Deng S, Xu Q, Fu Y, Liang L, Wu Y, Peng F, et al. Genomic analysis of a novel phage infecting the Turkey pathogen Escherichia coli APEC O78 and its endolysin activity. Viruses. 2021; 13 (6): 1034. [
DOI:10.3390/v13061034] [
PMID] [
PMCID]
30. Zhang H, Bao H, Billington C, Hudson JA, Wang R. Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol. 2012; 31 (1): 133-6. [
DOI:10.1016/j.fm.2012.01.005] [
PMID]
31. Mayer MJ, Payne J, Gasson MJ, Narbad A. Genomic sequence and characterization of the virulent bacteriophage ΦCTP1 from Clostridium tyrobutyricum and heterologous expression of its endolysin. Appl Environ Microbiol. 2010; 76 (16): 5415-22. [
DOI:10.1128/AEM.00989-10] [
PMID] [
PMCID]
32. Mayer MJ, Gasson MJ, Narbad A. Genomic sequence of bacteriophage ATCC 8074-B1 and activity of its endolysin and engineered variants against Clostridium sporogenes. Appl Environ Microbiol. 2012; 78 (10): 3685-92. [
DOI:10.1128/AEM.07884-11] [
PMID] [
PMCID]
33. Rodríguez-Rubio L, Gerstmans H, Thorpe S, Mesnage S, Lavigne R, Briers Y. DUF3380 domain from a Salmonella phage endolysin shows potent N-acetylmuramidase activity. Appl Environ Microbiol. 2016; 82 (16): 4975-81. [
DOI:10.1128/AEM.00446-16] [
PMID] [
PMCID]
34. Gervasi T, Lo Curto R, Minniti E, Narbad A, Mayer MJ. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Lett Appl Microbiol. 2014; 59 (4): 355-61. [
DOI:10.1111/lam.12298] [
PMID]
35. Vasina DV, Antonova NP, Grigoriev IV, Yakimakha VS, Lendel AM, Nikiforova MA, et al. Discovering the potentials of four phage endolysins to combat gram-negative infections. Front Microbiol. 2021; 12: 748718. [
DOI:10.3389/fmicb.2021.748718] [
PMID] [
PMCID]
36. Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol. 2021; 68: 251-61. [
DOI:10.1016/j.copbio.2021.02.002] [
PMID]
37. Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis biofilm removal efficiency among bacteriophage PBEF129, its endolysin, and cefotaxime. Viruses. 2021; 13 (3): 426. [
DOI:10.3390/v13030426] [
PMID] [
PMCID]
38. Gutierrez D, Ruas-Madiedo P, Martinez B, Rodríguez A, Garcia P. Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS One. 2014; 9 (9): e107307. [
DOI:10.1371/journal.pone.0107307] [
PMID] [
PMCID]
39. Cha Y, Chun J, Son B, Ryu S. Characterization and genome analysis of Staphylococcus aureus podovirus CSA13 and its anti-biofilm capacity. Viruses. 2019; 11 (1): 54. [
DOI:10.3390/v11010054] [
PMID] [
PMCID]
40. Shen Y, Köller T, Kreikemeyer B, Nelson DC. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother. 2013; 68 (8): 1818-24. [
DOI:10.1093/jac/dkt104] [
PMID]
41. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, et al. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One. 2014; 9 (10): e108376. [
DOI:10.1371/journal.pone.0108376] [
PMID] [
PMCID]
42. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, et al. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol. 2017; 8: 293. [
DOI:10.3389/fmicb.2017.00293] [
PMID] [
PMCID]
43. Simmons M, Morales CA, Oakley BB, Seal BS. Recombinant expression of a putative amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its monolayer in conjunction with a protease. Probiotics Antimicrob Proteins. 2012; 4 (1): 1-10. [
DOI:10.1007/s12602-011-9084-5] [
PMID]
44. Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh Ki, Miyamoto T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol. 2021; 98: 103791. [
DOI:10.1016/j.fm.2021.103791] [
PMID]
45. Tiwari BR, Kim S, Kim J. A virulent Salmonella enterica serovar Enteritidis phage SE2 with a strong bacteriolytic activity of planktonic and biofilmed cells. J Bacteriol Virol. 2013; 43 (3): 186-94. [
DOI:10.4167/jbv.2013.43.3.186]
46. Karaca B, Akcelik N, Akcelik M. Effects of P22 bacteriophage on Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and eradication. Arch Biol Sci. 2015; 67 (4): 1361-7. [
DOI:10.2298/ABS141120114K]
47. Yüksel FN, Buzrul S, Akçelik M, Akçelik N. Inhibition and eradication of Salmonella Typhimurium biofilm using P22 bacteriophage, EDTA and nisin. Biofouling. 2018; 34 (9): 1046-54. [
DOI:10.1080/08927014.2018.1538412] [
PMID]
48. Garcia KCOD, de Oliveira Corrêa IM, Pereira LQ, Silva TM, Mioni MSR, de Moraes Izidoro AC, et al. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poult Sci. 2017; 96 (9): 3392-8. [
DOI:10.3382/ps/pex124] [
PMID]
49. Milho C, Silva MD, Melo L, Santos S, Azeredo J, Sillankorva S. Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling. 2018; 34 (7): 753-68. [
DOI:10.1080/08927014.2018.1501475] [
PMID]
50. Kosznik-Kwaśnicka K, Ciemińska K, Grabski M, Grabowski L, Górniak M, Jurczak-Kurek A, et al. Characteristics of a series of three bacteriophages infecting Salmonella enterica strains. Int J Mol Sci. 2020; 21 (17): 6152. [
DOI:10.3390/ijms21176152] [
PMID] [
PMCID]
51. Sadekuzzaman M, Mizan MFR, Yang S, Kim HS, Ha SD. Application of bacteriophages for the inactivation of Salmonella spp. in biofilms. Food Sci Technol Int. 2018; 24 (5): 424-33. [
DOI:10.1177/1082013218763424] [
PMID]
52. Bai J, Yang E, Chang PS, Ryu S. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme Microb Technol. 2019; 128: 40-8. [
DOI:10.1016/j.enzmictec.2019.05.006] [
PMID]
53. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. mBio. 2014; 5 (4): e01379-14. [
DOI:10.1128/mBio.01379-14] [
PMID] [
PMCID]
54. Hathaway H, Milo S, Sutton JM, Jenkins TA. Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins. Ther Deliv. 2017; 8 (7): 543-56. [
DOI:10.4155/tde-2017-0040] [
PMID]
55. Gondil VS, Dube T, Panda JJ, Yennamalli RM, Harjai K, Chhibber S. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharm. 2020; 573: 118850. [
DOI:10.1016/j.ijpharm.2019.118850] [
PMID]
56. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001; 73 (2-3): 255-67. [
DOI:10.1016/S0168-3659(01)00294-2] [
PMID]
57. Bozkir A, Saka OM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 2004; 11 (2): 107-12. [
DOI:10.1080/10717540490280705] [
PMID]
58. Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013; 172 (1): 207-18. [
DOI:10.1016/j.jconrel.2013.08.005] [
PMID]
59. Schmelcher M, Loessner MJ. Bacteriophage endolysins - extending their application to tissues and the bloodstream. Curr Opin Biotechnol. 2021; 68: 51-9. [
DOI:10.1016/j.copbio.2020.09.012] [
PMID]
60. Wdowiak M, Paczesny J, Raza S. Enhancing the stability of bacteriophages using physical, chemical, and nano-based approaches: a review. Pharmaceutics. 2022; 14 (9): 1936. [
DOI:10.3390/pharmaceutics14091936] [
PMID] [
PMCID]
61. Wang Y, Khanal D, Alreja AB, Yang H, Chang RY, Tai W, et al. Bacteriophage endolysin powders for inhaled delivery against pulmonary infections. Int J Pharm. 2023; 635: 122679. [
DOI:10.1016/j.ijpharm.2023.122679] [
PMID]
62. Miller RW, Skinner J, Sulakvelidze A, Mathis GF, Hofacre CL. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis. 2010; 54 (1): 33-40. [
DOI:10.1637/8953-060509-Reg.1] [
PMID]
63. Rahman Mu, Wang W, Sun Q, Shah JA, Li C, Sun Y, et al. Endolysin, a promising solution against antimicrobial resistance. Antibiotics. 2021; 10 (11): 1277. [
DOI:10.3390/antibiotics10111277] [
PMID] [
PMCID]
64. Murray E, Draper LA, Ross RP, Hill C. The advantages and challenges of using endolysins in a clinical setting. Viruses. 2021; 13 (4): 680. [
DOI:10.3390/v13040680] [
PMID] [
PMCID]
65. Kwok R. Five hard truths for synthetic biology. Nature. 2010; 463: 288-90. [
DOI:10.1038/463288a] [
PMID]
66. García R, Latz S, Romero J, Higuera G, García K, Bastías R. Bacteriophage production models: an overview. Front Microbiol. 2019; 10: 1187. [
DOI:10.3389/fmicb.2019.01187] [
PMID] [
PMCID]
67. Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol. 2023; 14: 1259210. [
DOI:10.3389/fmicb.2023.1259210] [
PMID] [
PMCID]
68. Jończyk-Matysiak E, Lodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, et al. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther. 2019; 17 (8): 583-606. [
DOI:10.1080/14787210.2019.1646126] [
PMID]
69. Noormohammadi H, Abolmaali S, Astaneh SDA. Identification and characterization of an endolysin like from Bacillus subtilis. Microb Pathog. 2018; 119: 221-4. [
DOI:10.1016/j.micpath.2018.04.028] [
PMID]
70. Cooper CJ, Mirzaei MK, Nilsson AS. Adapting drug approval pathways for bacteriophage based therapeutics. Front Microbiol. 2016; 7: 1209. [
DOI:10.3389/fmicb.2016.01209] [
PMID] [
PMCID]