Volume 13, Issue 2 (6-2025)                   JoMMID 2025, 13(2): 139-146 | Back to browse issues page

Ethics code: IR.PII.REC.1400.086

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani S, Saberi Harooni N, Dehghani Tafti F, Shafiei M, Tahghighi A. Antibacterial and Antibiofilm Efficacy of a Synthetic Nitrofuranyl Pyranopyrimidinone Derivative against Methicillin-Resistant Staphylococcus aureus. JoMMID 2025; 13 (2) :139-146
URL: http://jommid.pasteur.ac.ir/article-1-766-en.html
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (79 Views)
Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health concern due to its multidrug resistance and robust biofilm formation, which contribute to persistent infections and treatment failures. Novel antibiofilm agents are urgently needed to combat drug-resistant pathogens. This study evaluated the antibacterial and antibiofilm efficacy of NFPPO, a novel nitrofuranyl pyranopyrimidinone derivative, against preformed 1-, 3-, and 5-day-old MRSA biofilms. Methods: NFPPO was synthesized via a tandem Knoevenagel-Michael cyclocondensation reaction. The minimum inhibitory concentration (MIC) of NFPPO was determined against four clinical MRSA isolates and the reference strain S. aureus ATCC 700699. Antibiofilm activity was assessed against preformed 1-, 3-, and 5-day-old MRSA biofilms using the crystal violet assay. Confocal laser scanning microscopy (CLSM) quantified structural and viability changes in preformed biofilms post-NFPPO treatment. Results: All tested MRSA isolates and S. aureus ATCC 700699 exhibited vancomycin resistance (classified as VRSA), whereas NFPPO showed potent antibacterial activity (MIC, 8–16 µg/mL). All isolates formed robust biofilms (OD625 ≥ 3.0). Crystal violet assays and CLSM demonstrated significant NFPPO antibiofilm activity, reducing biofilm biomass and viability. Conclusion: NFPPO exhibited superior antibiofilm efficacy compared to vancomycin in eradicating in vitro preformed 1-, 3-, and 5-day-old MRSA biofilms. These findings position NFPPO as a promising candidate for further development to target biofilm-associated MRSA infections.
Full-Text [PDF 973 kb]   (14 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2025/08/9 | Accepted: 2025/06/11 | Published: 2025/06/11

References
1. Linz MS, Mattappallil A, D'Angelo DM. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics. 2023; 12 (3): 557. [DOI:10.3390/antibiotics12030557] [PMID] [PMCID]
2. Sergelidis D, Angelidis AS. Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett Appl Microbiol. 2017; 64 (6): 409-18. [DOI:10.1111/lam.12735] [PMID]
3. Wakabayashi Y, Takemoto K, Iwasaki S, Yajima T, Kido A, Yamauchi A, et al. Isolation and characterization of Staphylococcus argenteus strains from retail foods and slaughterhouses in Japan. Int J Food Microbiol. 2022; 363: 109503. [DOI:10.1016/j.ijfoodmicro.2021.109503] [PMID]
4. Lin JL, Peng Y, Ou QT, Lin DX, Li Y, Ye XH, et al. A molecular epidemiological study of methicillin-resistant Staphylococci environmental contamination in railway stations and coach stations in Guangzhou of China. Lett Appl Microbiol. 2017; 64 (2): 131-7. [DOI:10.1111/lam.12700] [PMID]
5. Silva V, Almeida F, Carvalho JA, Castro AP, Ferreira E, Manageiro V, et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur J Clin Microbiol Infect Dis. 2020; 39 (1): 179-6. [DOI:10.1007/s10096-019-03709-6] [PMID]
6. Peng Q, Tang X, Dong W, Sun N, Yuan W. A review of biofilm formation of staphylococcus aureus and its regulation mechanism. antibiotics (Basel). 2022; 12 (1): 12. [DOI:10.3390/antibiotics12010012] [PMID] [PMCID]
7. Ning Y, Wang X, Chen P, Liu S, Hu J, Xiao R. Targeted inhibition of methicillin-resistant Staphylococcus aureus biofilm formation by a graphene oxide-loaded aptamer/berberine bifunctional complex. Drug Deliv. 2022; 29 (1): 1675-83. [DOI:10.1080/10717544.2022.2079768] [PMID] [PMCID]
8. Silva V, Almeida L, Gaio V, Cerca N, Manageiro V, Caniça M. Biofilm formation of multidrug-resistant MRSA strains isolated from different types of human infections. Pathogens. 2021; 10 (8): 970. [DOI:10.3390/pathogens10080970] [PMID] [PMCID]
9. Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020; 84 (3): e00026-19. [DOI:10.1128/MMBR.00026-19] [PMID] [PMCID]
10. Idrees M, Sawant SH, Karodia N, Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021; 18 (14): 7602. [DOI:10.3390/ijerph18147602] [PMID] [PMCID]
11. Luna CM, Rodríguez-Noriega E, Bavestrello L, Gotuzzo E. Treatment of methicillin-resistant Staphylococcus aureus in Latin America. Braz J Infect Dis. 2010; 14 Suppl 2: S119-27. [DOI:10.1590/S1413-86702010000800007] [PMID]
12. Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA infection: where are we? Curr Med Chem. 2024; 31 (28): 4425-60. [DOI:10.2174/0109298673249381231130111352] [PMID]
13. Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019; 7: 824. [DOI:10.3389/fchem.2019.00824] [PMID] [PMCID]
14. Abd El-Sattar NEA, El-Adl K, El-Hashash MA, Salama SA, Elhady MM. Design, synthesis, molecular docking and in silico ADMET profile of pyrano[2,3-d]pyrimidine derivatives as antimicrobial and anticancer agents. Bioorg Chem. 2021; 115: 105186. [DOI:10.1016/j.bioorg.2021.105186] [PMID]
15. Ziarani GM, Nasab NH, Rahimifard M, Soorki AA. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities. J Saudi Chem Soc. 2015; 19 (6): 676-81. [DOI:10.1016/j.jscs.2014.06.007]
16. Yalagala K, Maddila S, Rana S, Maddila SN, Kalva S, Skelton AA. Synthesis, antimicrobial activity and molecular docking studies of pyrano[2,3-d]pyrimidine formimidate derivatives. Res Chem Intermed. 2016; 42 (4): 3763-74. [DOI:10.1007/s11164-015-2243-7]
17. Aremu OS, Singh P, Singh M, Mocktar C, Koorbanally NA. Synthesis of chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,4‐diones using organic catalysts and their antimicrobial and anticancer activities. J Heterocycl Chem. 2019; 56 (11): 3008-16. [DOI:10.1002/jhet.3695]
18. Aremu OS, Gopaul K, Kadam P, Mocktar C, Singh P, Koorbanally NA. Synthesis, characterization, anticancer and antibacterial activity of some novel pyrano[2,3-d]pyrimidinone carbonitrile derivatives. Anticancer Agents Med Chem. 2017; 17 (5): 719-25. [DOI:10.2174/1871520616666160813213245] [PMID]
19. Saberi Harooni N, Dehghani Tafti F, Moghaddam N, Naeimi H, Azerang P, Tahghighi A. Antibacterial efficacy of pyranopyrimidinone derivatives synthesized using a facile one-pot reaction. Re Chem Intermed. 2024; 50 (9): 4533-50. [DOI:10.1007/s11164-024-05337-y]
20. Zafari M, Adibi M, Chiani M, Bolourchi N, Barzi SM, Shams Nosrati MS, et al. Effects of cefazolin-containing niosome nanoparticles against methicillin-resistant Staphylococcus aureus biofilm formed on chronic wounds. Biomed Mater. 2021; 16 (3): 035001. [DOI:10.1088/1748-605X/abc7f2] [PMID]
21. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2024.
22. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007; 115 (8): 891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
23. Kaushik A, Kest H, Sood M, Steussy BW, Thieman C, Gupta S. Biofilm producing methicillin-resistant Staphylococcus aureus (MRSA) infections in humans: clinical implications and management. Pathogens. 2024; 13 (1): 76. [DOI:10.3390/pathogens13010076] [PMID] [PMCID]
24. Bremner JB. An update review of approaches to multiple action-based antibacterials. Antibiotics (Basel). 2023; 12 (5): 865. [DOI:10.3390/antibiotics12050865] [PMID] [PMCID]
25. Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-biofilm strategies: a focused review on innovative approaches. Microorganisms. 2024; 12 (4): 639. [DOI:10.3390/microorganisms12040639] [PMID] [PMCID]
26. Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation. Infect Drug Resist. 2023; 16: 19-49. [DOI:10.2147/IDR.S380883] [PMID] [PMCID]
27. Zuma NH, Aucamp J, N'Da DD. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur J Pharm Sci. 2019; 140: 105092. [DOI:10.1016/j.ejps.2019.105092] [PMID]
28. Pala L, Sirec T, Spitz U. Modified enzyme substrates for the detection of bacteria: a review. Molecules. 2020; 25 (16): 3690. [DOI:10.3390/molecules25163690] [PMID] [PMCID]
29. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev. 2008; 32 (3): 474-500. [DOI:10.1111/j.1574-6976.2008.00107.x] [PMID]
30. Chain EPoCitF. Scientific opinion on nitrofurans and their metabolites in food. EFSA J. 2015; 13 (6): 4140. [DOI:10.2903/j.efsa.2015.4140]
31. Kavaliauskas P, Grybaite B, Mickevicius V, Petraitiene R, Grigaleviciute R, Planciuniene R, et al. Synthesis, ADMET properties, and in vitro antimicrobial and antibiofilm activity of 5-Nitro-2-thiophenecarbaldehyde N-((E)-(5-Nitrothienyl)methylidene)hydrazone (KTU-286) against staphylococcus aureus with defined resistance mechanisms. Antibiotics (Basel). 2020; 9 (9): 612. [DOI:10.3390/antibiotics9090612] [PMID] [PMCID]
32. Kamal A, Hussaini SMA, Faazil S, Poornachandra Y, Reddy GN, Kumar CG, et al. Anti-tubercular agents. Part 8: synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1,2,3-triazoles. Bioorg Med Chem Lett. 2013; 23 (24): 6842-6. [DOI:10.1016/j.bmcl.2013.10.010] [PMID]
33. Ndukwe ARN, Qin J, Wiedbrauk S, Boase NRB, Fairfull-Smith KE, Totsika M. In vitro activities of oxazolidinone antibiotics alone and in combination with C-TEMPO against methicillin-resistant Staphylococcus aureus biofilms. Antibiotics (Basel). 2023; 12 (12): 1706. [DOI:10.3390/antibiotics12121706] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.