1. Rappuoli R, Black S, Lambert PH. Vaccine discovery and translation of new vaccine technology. Lancet. 2011; 378 (9788): 360-8. [
DOI:10.1016/S0140-6736(11)60440-6] [
PMID]
2. Koff WC, Burton DR, Johnson PR, Walker BD, King CR, Nabel GJ, et al. Accelerating next-generation vaccine development for global disease prevention. Science. 2013; 340 (6136): 1232910. [
DOI:10.1126/science.1232910] [
PMID] [
PMCID]
3. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020; 12 (2): 102. [
DOI:10.3390/pharmaceutics12020102] [
PMID] [
PMCID]
4. Cid R, Bolívar J. Platforms for production of protein-based vaccines: from classical to next-generation strategies. Biomolecules. 2021; 11 (8): 1072. [
DOI:10.3390/biom11081072] [
PMID] [
PMCID]
5. Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med. 2021; 27 (4): 591-600. [
DOI:10.1038/s41591-021-01301-0] [
PMID]
6. Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther. 2022; 7 (1): 94. [
DOI:10.1038/s41392-022-00950-y] [
PMID] [
PMCID]
7. Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, et al. A guide to nucleic acid vaccines in the prevention and treatment of infectious diseases and cancers: from basic principles to current applications. Front Cell Dev Biol. 2021; 9: 633776. [
DOI:10.3389/fcell.2021.633776] [
PMID] [
PMCID]
8. Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, et al. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol. 2024; 15: 1332939. [
DOI:10.3389/fimmu.2024.1332939] [
PMID] [
PMCID]
9. Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging concepts and technologies in vaccine development. Front Immunol. 2020; 11: 583077. [
DOI:10.3389/fimmu.2020.583077] [
PMID] [
PMCID]
10. Wang S, Lu S. DNA immunization. Curr Protoc Microbiol. 2013; 31 (1): 18.3.1-18.3.24. [
DOI:10.1002/9780471729259.mc1803s31] [
PMID] [
PMCID]
11. Williams JA. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines. 2013; 1 (3): 225-49. [
DOI:10.3390/vaccines1030225] [
PMID] [
PMCID]
12. Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine. 2021; 39 (16): 2190-200. [
DOI:10.1016/j.vaccine.2021.03.038] [
PMID] [
PMCID]
13. Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun. 2022; 13 (1): 1536. [
DOI:10.1038/s41467-022-28776-w] [
PMID] [
PMCID]
14. Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: advances and challenges. J Biol Chem. 2025; 301 (1): 108015. [
DOI:10.1016/j.jbc.2024.108015] [
PMID] [
PMCID]
15. Pardi N, Parkhouse K, Kirkpatrick E, McMahon M, Zost SJ, Mui BL, et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun. 2018; 9 (1): 3361. [
DOI:10.1038/s41467-018-05482-0] [
PMID] [
PMCID]
16. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019; 27 (4): 757-72. [
DOI:10.1016/j.ymthe.2019.01.020] [
PMID] [
PMCID]
17. Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008; 9 (10): 776-88. [
DOI:10.1038/nrg2432] [
PMID] [
PMCID]
18. Liang Y, Huang L, Liu T. Development and delivery systems of mRNA vaccines. Front Bioeng Biotechnol. 2021; 9: 718753. [
DOI:10.3389/fbioe.2021.718753] [
PMID] [
PMCID]
19. Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother. 2014; 10 (11): 3153-64. [
DOI:10.4161/21645515.2014.980686] [
PMID] [
PMCID]
20. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011; 239 (1): 62-84. [
DOI:10.1111/j.1600-065X.2010.00980.x] [
PMID]
21. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012; 9 (11): 1319-30. [
DOI:10.4161/rna.22269] [
PMID] [
PMCID]
22. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016; 15 (3): 313-29. [
DOI:10.1586/14760584.2016.1124762] [
PMID] [
PMCID]
23. Rauch S, Lutz J, Kowalczyk A, Schlake T, Heidenreich R. RNActive technology: generation and testing of stable and immunogenic mRNA vaccines. In: Rabinovich PM, editor. Synthetic messenger RNA and cell metabolism modulation: methods and protocols. New York: Humana Press; 2017. p. 89-107. [
DOI:10.1007/978-1-4939-6481-9_5] [
PMID]
24. Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, et al. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023; 40 (7): 200. [
DOI:10.1007/s12032-023-02060-3] [
PMID] [
PMCID]
25. Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine. 2012; 30 (30): 4414-8. [
DOI:10.1016/j.vaccine.2012.04.060] [
PMID]
26. Dobrovolskaia MA, McNeil SE. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther. 2015; 15 (7): 1023-48. [
DOI:10.1517/14712598.2015.1014794] [
PMID]
27. Würtele H, Little KCE, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther. 2003; 10 (21): 1791-9. [
DOI:10.1038/sj.gt.3302074] [
PMID]
28. Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A comprehensive review of mRNA vaccines. Int J Mol Sci. 2023; 24 (3): 2700. [
DOI:10.3390/ijms24032700] [
PMID] [
PMCID]
29. Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022; 18 (2): 459. [
DOI:10.7150/ijbs.59272] [
PMID] [
PMCID]
30. Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26 (1): 64-70. [
DOI:10.1016/j.jsps.2017.10.012] [
PMID] [
PMCID]
31. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018; 9: 2224. [
DOI:10.3389/fimmu.2018.02224] [
PMID] [
PMCID]
32. Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013; 21 (8): 1570-8. [
DOI:10.1038/mt.2013.124] [
PMID] [
PMCID]
33. Khare P, Dave KM, Kamte YS, Manoharan MA, O'Donnell LA, Manickam DS. Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J. 2021; 24 (1): 8. [
DOI:10.1208/s12248-021-00653-2] [
PMID] [
PMCID]
34. Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019; 11 (45): 21733-9. [
DOI:10.1039/C9NR09347H] [
PMID]
35. Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018; 379 (1): 11-21. [
DOI:10.1056/NEJMoa1716153] [
PMID]
36. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021; 6 (12): 1078-94. [
DOI:10.1038/s41578-021-00358-0] [
PMID] [
PMCID]
37. Barenholz Y. Doxil®-The first FDA-approved nano-drug: Lessons learned. J Control Release. 2012; 160 (2): 117-34. [
DOI:10.1016/j.jconrel.2012.03.020] [
PMID]
38. Kim EM, Jeong HJ. Liposomes: biomedical applications. Chonnam Med J. 2021; 57 (1): 27-35. [
DOI:10.4068/cmj.2021.57.1.27] [
PMID] [
PMCID]
39. Gu W, Andrews GP, Tian Y. Recent clinical successes in liposomal nanomedicines. Int J Drug Discov Pharmacol. 2023; 2 (1): 52-9. [
DOI:10.53941/ijddp.0201009]
40. Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023; 15 (6): 1593. [
DOI:10.3390/pharmaceutics15061593] [
PMID] [
PMCID]
41. Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J Transl Med. 2024; 22 (1): 339. [
DOI:10.1186/s12967-024-05160-4] [
PMID] [
PMCID]
42. Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA delivery to hepatocytes and hepatic stellate cells. Mol Pharm. 2022; 19 (7): 2175-82. [
DOI:10.1021/acs.molpharmaceut.2c00033] [
PMID] [
PMCID]
43. Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021; 6 (2): e10213. [
DOI:10.1002/btm2.10213] [
PMID] [
PMCID]
44. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010; 28 (2): 172-6. [
DOI:10.1038/nbt.1602] [
PMID]
45. Guimaraes LC, Costa PAC, Scalzo Júnior SRA, Ferreira HAS, Braga ACS, de Oliveira LC, et al. Nanoparticle-based DNA vaccine protects against SARS-CoV-2 variants in female preclinical models. Nat Commun. 2024; 15 (1): 590. [
DOI:10.1038/s41467-024-44830-1] [
PMID] [
PMCID]
46. Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug Chem. 2023; 34 (6): 941-60. [
DOI:10.1021/acs.bioconjchem.3c00174] [
PMID] [
PMCID]
47. Ly HH, Daniel S, Soriano SK, Kis Z, Blakney AK. Optimization of lipid nanoparticles for saRNA expression and cellular activation using a design-of-experiment approach. Mol Pharm. 2022; 19 (6): 1892-905. [
DOI:10.1021/acs.molpharmaceut.2c00032] [
PMID] [
PMCID]
48. Farooq MA, Johnston AP, Trevaskis NL. Impact of nanoparticle properties on immune cell interactions in the lymph node. Acta Biomater. 2025: 193: 65-82. [
DOI:10.1016/j.actbio.2024.12.039] [
PMID]
49. Catenacci L, Rossi R, Sechi F, Buonocore D, Sorrenti M, Perteghella S, et al. Effect of lipid nanoparticle physico-chemical properties and composition on their interaction with the immune system. Pharmaceutics. 2024; 16 (12): 1521. [
DOI:10.3390/pharmaceutics16121521] [
PMID] [
PMCID]
50. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 2014; 13 (10): 759-80. [
DOI:10.1038/nrd4278] [
PMID]
51. Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev. 2024; 209: 115304. [
DOI:10.1016/j.addr.2024.115304] [
PMID]
52. Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of immune responses by particle size and shape. Front Immunol. 2021; 11: 607945. [
DOI:10.3389/fimmu.2020.607945] [
PMID] [
PMCID]
53. Sasaki K, Sato Y, Okuda K, Iwakawa K, Harashima H. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics. 2022; 14 (8): 1572. [
DOI:10.3390/pharmaceutics14081572] [
PMID] [
PMCID]
54. Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017; 25 (7): 1467-75. [
DOI:10.1016/j.ymthe.2017.03.013] [
PMID] [
PMCID]
55. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010; 107 (5): 1864-9. [
DOI:10.1073/pnas.0910603106] [
PMID] [
PMCID]
56. Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. Sci Total Environ. 2024; 927: 172240. [
DOI:10.1016/j.scitotenv.2024.172240] [
PMID]
57. Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release. 2015; 203: 1-15. [
DOI:10.1016/j.jconrel.2015.02.003] [
PMID]
58. Di J, Du Z, Wu K, Jin S, Wang X, Li T, et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm Res. 2022; 39 (1): 105-14. [
DOI:10.1007/s11095-022-03166-5] [
PMID] [
PMCID]
59. Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020; 159: 344-63. [
DOI:10.1016/j.addr.2020.06.026] [
PMID] [
PMCID]
60. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018; 17 (4): 261-79. [
DOI:10.1038/nrd.2017.243] [
PMID] [
PMCID]
61. Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev. 2020; 154-155: 37-63. [
DOI:10.1016/j.addr.2020.06.002] [
PMID]
62. Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet. 2021; 41: 100424. [
DOI:10.1016/j.dmpk.2021.100424] [
PMID] [
PMCID]