Volume 13, Issue 3 (9-2025)                   JoMMID 2025, 13(3): 163-172 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei S, Saghazadeh M, Jaberi K, Fateh A, Mazaheri Nezhad Fard R. Advances and Challenges in Laboratory Diagnosis of Nocardia Infections: Traditional and Emerging Approaches. JoMMID 2025; 13 (3) :163-172
URL: http://jommid.pasteur.ac.ir/article-1-739-en.html
Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (536 Views)
Nocardia spp. are filamentous bacteria that may cause nocardiosis; however, the disease’s clinical symptoms often mimic tuberculosis, fungal infections and malignancies, complicating diagnosis. Several factors limit the effectiveness of traditional cultures and biochemical methods, including slow bacterial growth, challenges in interpreting the variable partial acid-fast stain, and suboptimal sensitivity and specificity. Molecular techniques such as real-time polymerase chain reaction (real-time PCR), multilocus sequence analysis (MLSA) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) enhance species identification but are costly, technically complex, and, in the case of real time PCR, prone to false positives due to airway colonization. Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) accelerates identification, but its accuracy depends on robust reference spectra and optimized extraction protocols, particularly for gram positive actinomycetes. Advanced genomic tools, including whole genome sequencing (WGS) and metagenomic next generation sequencing (mNGS), offer high resolution strain differentiation and antimicrobial resistance profiling; however, their widespread clinical use is limited by high costs and complex data interpretation. To address these limitations, emerging technologies such as Raman spectroscopy and electrochemical sensors promise rapid and sensitive detection but are still largely experimental. Current challenges include a lack of standardized protocols, limited accessibility in resource-poor settings, and gaps in standardized antimicrobial susceptibility testing. Integrating genomic and proteomic approaches may improve diagnostic accuracy and support targeted therapeutic strategies. Despite technological advances, development of rapid, affordable diagnostic tools is essential to improve detection of nocardiosis. In this review, advances and challenges in laboratory diagnosis of Nocardia infections are discussed.
 
Full-Text [PDF 896 kb]   (111 Downloads)    
Type of Study: Mini Review | Subject: Diagnostic/screening methods and protocols
Received: 2025/05/26 | Accepted: 2025/09/10 | Published: 2025/12/2

References
1. Nonthakaew N, Sharkey LKR, Pidot SJ. The genus Nocardia as a source of new antimicrobials. NPJ Antimicrob Resist. 2025; 3 (1): 5. [DOI:10.1038/s44259-025-00075-6] [PMID] [PMCID]
2. Conville PS, Brown-Elliott BA, Smith T, Zelazny AM. The complexities of Nocardia taxonomy and identification. J Clin Microbiol. 2017; 56 (1): e01419-17. [DOI:10.1128/JCM.01419-17] [PMID] [PMCID]
3. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the Phylum Actinobacteria. Front Microbiol. 2018; 9: 2007. [DOI:10.3389/fmicb.2018.02007] [PMID] [PMCID]
4. Traxler RM, Bell ME, Lasker B, Headd B, Shieh WJ, McQuiston JR. Updated review on Nocardia species: 2006- 2021. Clin Microbiol Rev. 2022; 35 (4): e00027-21. [DOI:10.1128/cmr.00027-21] [PMID] [PMCID]
5. Duggal SD, Chugh TD. Nocardiosis: a neglected disease. Med Princ Pract. 2020; 29 (6): 514-23. [DOI:10.1159/000508717] [PMID] [PMCID]
6. Thomas T, Lowe M, Le Roux K, Strydom KA. Nocardia species epidemiology and susceptibility profiles from 2019- 2022 in South Africa. Int J Infect Dis. 2025; 152: 107675. [DOI:10.1016/j.ijid.2024.107675]
7. Gupta S, Grant LM, Powers HR, Kimes KE, Hamdi A, Butterfield RJ, et al. Invasive Nocardia infections across distinct geographic regions, United States. Emerg Infect Dis. 2023; 29 (12): 2417-25. [DOI:10.3201/eid2912.230673] [PMID] [PMCID]
8. Zhang L, Zhou M, Wang Z, Zhu H, Lin J, Lu M, et al. Comparison of clinical characteristics and treatment outcome between localized and disseminated nocardiosis in a tertiary hospital in China. Infect Drug Resist. 2024; 17: 2379-87. [DOI:10.2147/IDR.S458124] [PMID] [PMCID]
9. Ashraf AA, Bhat P. Nocardiosis: an essential diagnostic challenge in suspected pulmonary tuberculosis. J Med Microbiol Infect Dis. 2024; 12 (3): 235-42. [DOI:10.61186/JoMMID.12.3.235]
10. Acosta F, Vega B, Monzón-Atienza L, Superio J, Torrecillas S, Gómez-Mercader A, et al. Phylogenetic reconstruction, histopathological characterization, and virulence determination of a novel fish pathogen, Nocardia brasiliensis. Aquaculture. 2024; 581: 740458. [DOI:10.1016/j.aquaculture.2023.740458]
11. Kurosawa S, Sekiya N, Doki N, Yaguchi T, Kishida Y, Nagata A, et al. The emergence of rare nocardiosis following allogeneic hematopoietic stem cell transplantation in the era of molecular taxonomy. Int J Infect Dis. 2019; 89: 154-62. [DOI:10.1016/j.ijid.2019.10.003] [PMID]
12. Joseph J, Sharma S, Dave VP. Filamentous gram-negative bacteria masquerading as actinomycetes in infectious endophthalmitis: a review of three cases. J Ophthalmic Inflame Infect. 2018; 8 (1): 15. [DOI:10.1186/s12348-018-0157-4] [PMID] [PMCID]
13. Gandham N, Kannuri S, Gupta A, Mukhida S, Das N, MirzaS. A post-transplant infection by Nocardia cyriacigeorgica. Access Microbiol. 2023; 5 (11): 000569.v3. [DOI:10.1099/acmi.0.000569.v3]
14. Corsini Campioli C, Castillo Almeida NE, O'Horo JC, Challener D, Go JR, DeSimone DC, et al. Clinical presentation, management, and outcomes of patients with brain abscess due to Nocardia species. Open Forum Infect Dis. 2021; 8 (4): ofab067. [DOI:10.1093/ofid/ofab067] [PMID] [PMCID]
15. Bafghi MF, Heidarieh P, Soori T, Saber S, Meysamie A, Gheitoli K, et al. Nocardia isolation from clinical samples with the paraffin baiting technique. Germs. 2015; 5 (1): 12- 6. [DOI:10.11599/germs.2015.1066] [PMID] [PMCID]
16. Yeoh K, Globan M, Naimo P, Williamson DA, Lea K, Bond K. Identification and antimicrobial susceptibility of referred Nocardia isolates in Victoria, Australia 2009-2019. J Med Microbiol. 2022; 71 (8): 001581. [DOI:10.1099/jmm.0.001581] [PMID]
17. Lu SH, Qian ZW, Mou PP, Xie L. Clinical Nocardia species: identification, clinical characteristics, and antimicrobial susceptibility in Shandong, China. Bosn J Basic Med Sci. 2020; 20 (4): 531-8. [DOI:10.17305/bjbms.2020.4764]
18. Wang S, Wang P, Liu J, Yang C, Li T, Yang J, et al. Molecular detection of Nocardia: development and application of a real-time PCR assay in sputum and bronchoalveolar lavage fluid samples. Eur J Clin Microbiol Infect Dis. 2023; 42 (7): 865-72. [DOI:10.1007/s10096-023-04619-4] [PMID]
19. Bolourchi N, Ebrahimi E, Falah J, Javadi A, Eshraghi SS. Detection of Nocardia asteroides complex in clinical isolates by real-time polymerase chain reaction. J Sch Public Health Inst Public Health Res. 2019; 17 (3): 257-68.
20. Kuo SF, Chen FJ, Lan IC, Chien CC, Lee CH. Epidemiology of Nocardia species at a tertiary hospital in Southern Taiwan, 2012 to 2020: MLSA phylogeny and antimicrobial susceptibility. Antibiotics (Basel). 2022; 11 (10): 1438. [DOI:10.3390/antibiotics11101438] [PMID] [PMCID]
21. Chen XF, Hou X, Xiao M, Zhang L, Cheng JW, Zhou NL, et al. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis for the identification of pathogenic microorganisms: a review. Microorganisms. 2021; 9 (7): 1536. [DOI:10.3390/microorganisms9071536] [PMID] [PMCID]
22. Liu Y, Wu SY, Deng J, Zhuang KW, Tang Y, Wu N, et al. Application of MALDI-TOF mass spectrometry for identification of Nocardia species. BMC Microbiol. 2024; 24 (1): 358. [DOI:10.1186/s12866-024-03483-2] [PMID] [PMCID]
23. Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol. 2018; 9: 1294. [DOI:10.3389/fmicb.2018.01294] [PMID] [PMCID]
24. Calderaro A, Chezzi C. MALDI-TOF MS: a reliable tool in the real life of the clinical microbiology laboratory. Microorganisms. 2024; 12 (2): 322. [DOI:10.3390/microorganisms12020322] [PMID] [PMCID]
25. Cutarelli A, Carella F, De Falco F, Cuccaro B, Di Nocera F, Nava D, et al. Detection and quantification of Nocardia crassostreae, an emerging pathogen, in Mytilus galloprovincialis in the Mediterranean Sea using droplet digital PCR. Pathogens. 2023; 12 (8): 994. [DOI:10.3390/pathogens12080994] [PMID] [PMCID]
26. No authors listed. Correction to: Phenotypic and genotypic analysis of antimicrobial resistance in Nocardia species. J Antimicrob Chemother. 2023; 78 (11): 2783. [DOI:10.1093/jac/dkad282] [PMID]
27. Cruz-Medrano MG, Manzanares-Leal GL, González-Nava J, Moreno-Pérez PA, Sandoval-Trujillo H, Ramírez-Durán N. Genetic variability of the 16S rRNA gene of Nocardia brasiliensis, the most common causative agent of actinomycetoma in Latin America and the Caribbean. Rev Inst Med Trop Sao Paulo. 2023; 65: e31. [DOI:10.1590/s1678-9946202365031] [PMID] [PMCID]
28. Kratochwil CF, Kautt AF, Rometsch SJ, Meyer A. Benefits and limitations of a new genome-based PCR-RFLP genotyping assay (GB-RFLP): a SNP-based detection method for identification of species in extremely young adaptive radiations. Ecol Evol. 2022; 12 (3): e8751. [DOI:10.1002/ece3.8751] [PMID] [PMCID]
29. Fan N, Fang H, Huang F, Zhou J, Liu P, Li MJ, et al. Metagenome next-generation sequencing plays a key role in the diagnosis and selection of effective antibiotics on the treatment of Nocardia pneumonia: a case report. Front Med. 2024; 11: 1373319. [DOI:10.3389/fmed.2024.1373319] [PMID] [PMCID]
30. Guo X, Zhang Z, Chen Q, Wang L, Xu X, Wei Z, et al. Whole genome sequencing highlights the pathogenic profile in Nocardia keratitis. Invest Ophthalmol Vis Sci. 2024; 65 (3): 26. [DOI:10.1167/iovs.65.3.26] [PMID] [PMCID]
31. Liang Y, Lin M, Qiu L, Chen M, Tan C, Tu C, et al. Clinical characteristics of hospitalized patients with Nocardia genus detection by metagenomic next generation sequencing in a tertiary hospital from southern China. BMC Infect Dis. 2023; 23 (1): 772. [DOI:10.1186/s12879-023-08615-z] [PMID] [PMCID]
32. Eisenblätter M, Buchal A, Gayum H, Jasny E, Renner Viveros P, Ulrichs T, et al. Nocardia farcinica activates human dendritic cells and induces secretion of interleukin-23 (IL-23) rather than IL-12p70. Infect Immun. 2012; 80 (12): 4195-202. [DOI:10.1128/IAI.00741-12] [PMID] [PMCID]
33. Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016; 23 (4): 254-71. [DOI:10.1128/CVI.00001-16] [PMID] [PMCID]
34. Chen W, Liu Y, Zhang L, Gu X, Liu G, Shahid M, et al. Nocardia cyriacigeorgica from bovine mastitis induced in vitro apoptosis of bovine mammary epithelial cells via activation of mitochondrial-caspase pathway. Front Cell Infect Microbiol. 2017; 7: 194. [DOI:10.3389/fcimb.2017.00194] [PMID] [PMCID]
35. Hassan AF, Hateet RR, Al-Shakban MA. Biosynthesis and antibacterial activity of gold oxide nanoparticles by Nocardia asteroids isolated from soil. J Nanostruct. 2023; 13 (2): 417-30.
36. Rathod D, Golinska P, Wypij M, Dahm H, Rai M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med Microbiol Immunol. 2016; 205 (5): 435-47. [DOI:10.1007/s00430-016-0462-1] [PMID] [PMCID]
37. Scheier TC, Franz J, Boumasmoud M, Andreoni F, Chakrakodi B, Duvnjak B, et al. Fourier-transform infrared spectroscopy for typing of vancomycin-resistant Enterococcus faecium: performance analysis and outbreak investigation. Microbiol Spectr. 2023; 11 (5): e0098423. [DOI:10.1128/spectrum.00984-23] [PMID] [PMCID]
38. de Carvalho LFCS, de Lima Morais TM, Nogueira MS. Providing potential solutions by using FT-IR spectroscopy for biofluid analysis: clinical impact of optical screening and diagnostic tests. Photodiagnosis Photodyn Ther. 2023; 44: 103753. [DOI:10.1016/j.pdpdt.2023.103753] [PMID]
39. Buijtels PCAM, Willemse-Erix HFM, Petit PLC, Endtz HP, Puppels GJ, Verbrugh HA, et al. Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol. 2008; 46 (3): 961-5. [DOI:10.1128/JCM.01763-07] [PMID] [PMCID]
40. Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point- of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv. 2013; 31 (4): 438-49. [DOI:10.1016/j.biotechadv.2013.01.006] [PMID] [PMCID]
41. Rebrosova K, Samek O, Kizovsky M, Bernatova S, Hola V, Ruzicka F. Raman spectroscopy-a novel method for identification and characterization of microbes on a single- cell level in clinical settings. Front Cell Infect Microbiol. 2022; 12: 866463. [DOI:10.3389/fcimb.2022.866463] [PMID] [PMCID]
42. Wang L, Liu W, Tang JW, Wang JJ, Liu QH, Wen PB, Wang MM, Pan YC, Gu B, Zhang X. Applications of Raman spectroscopy in bacterial infections: principles, advantages, and shortcomings. Front Microbiol. 2021; 12: 683580. [DOI:10.3389/fmicb.2021.683580] [PMID] [PMCID]
43. Chandra A, Kumar V, Garnaik UC, Dada R, Qamar I, Goel VK, et al. Unveiling the molecular secrets: a comprehensive review of Raman spectroscopy in biological research. ACS Omega. 2024; 9 (51): 50049-63. [DOI:10.1021/acsomega.4c00591] [PMID] [PMCID]
44. Asaadi H, Vojdani A, Meshkat Z, Sankian M, Farsiani H, Tavakoly Sany SB, et al. Nucleic acid-functionalized nanoscale porous carbon-based electrochemical genosensors for detection of Nocardia spp. in real samples. Talanta. 2024; 280: 126706. [DOI:10.1016/j.talanta.2024.126706] [PMID]
45. Barbier E, Fouchet T, Hartmann A, Cambau E, Mougari F, Dubois C, et al. Rapid electrochemical detection of Mycobacterium tuberculosis in sputum by measuring Ag85 activity with disposable carbon sensors. Talanta. 2023; 253: 123927. [DOI:10.1016/j.talanta.2022.123927] [PMID]
46. Sardini E, Serpelloni M, Tonello S. Printed electrochemical biosensors: opportunities and metrological challenges. Biosensors (Basel). 2020; 10 (11): 166. [DOI:10.3390/bios10110166] [PMID] [PMCID]
47. Shariati R, Calabria D, Emamiamin A, Lazzarini E, Pace A, Guardigli M, et al. Electrochemical vs. optical biosensors for point-of-care applications: a critical review. Chemosensors. 2023; 11 (10): 546. [DOI:10.3390/chemosensors11100546]
48. Eshraghi SS. Molecular typing of Nocardia species. J Med Bacteriol. 2012; 1 (1-2): 38-45.
49. Kowalski K, Szewczyk R, Druszczyńska M. Mycolic acids-potential biomarkers of opportunistic infections caused by bacteria of the suborder Corynebacterineae. Postepy Hig Med Dosw (Online). 2012; 66: 461-8. [DOI:10.5604/17322693.1002082] [PMID]
50. Butler WR, Guthertz LS. Mycolic acid analysis by high- performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev. 2001; 14 (4): 704-26. [DOI:10.1128/CMR.14.4.704-726.2001] [PMID] [PMCID]
51. Nguyen P, Nazareth SC, Chen MY, Wang PC, Chen SC. An epidemiological analysis of Nocardia seriolae isolated from a wide range of aquatic animals in Taiwan, based on their genotype and enzymatic activity. J Fish Dis. 2023; 46 (4): 381-94. [DOI:10.1111/jfd.13751] [PMID]
52. Habibnia S, Heidarieh P, Fatahi-Bafghi M, Hashemi- Shahraki A, Eshraghi SS. Molecular identification of Nocardia strains from the soil by hsp65 gene: polymerase chain reaction-restriction fragment length polymorphism (RFLP) and analysis of sequence 16S rRNA gene. Arch Clin Infect Dis. 2018; 13 (4): e14962. [DOI:10.5812/archcid.14962]
53. Kalpoe JS, Templeton KE, Horrevorts AM, Endtz HP, Kuijper EJ, Bernards AT, et al. Molecular typing of a suspected cluster of Nocardia farcinica infections by use of randomly amplified polymorphic DNA, pulsed-field gel electrophoresis, and amplified fragment length polymorphism analyses. J Clin Microbiol. 2007; 45 (12): 4048-50. [DOI:10.1128/JCM.00932-07] [PMID] [PMCID]
54. Le CT, Price EP, Sarovich DS, Nguyen TTA, Powell D, Vu- Khac H, et al. Comparative genomics of Nocardia seriolae reveals recent importation and subsequent widespread dissemination in mariculture farms in the South-Central Coast region, Vietnam. Microb Genom. 2022; 8 (7): mgen000845. [DOI:10.1099/mgen.0.000845]
55. Wei M, Xu X, Yang J, Wang P, Liu Y, Wang S, Yang C, Gu L. MLSA phylogeny and antimicrobial susceptibility of clinical Nocardia isolates: a multicenter retrospective study in China. BMC Microbiol. 2021; 21 (1): 342. [DOI:10.1186/s12866-021-02412-x] [PMID] [PMCID]
56. Carvalho CS, de Aquino VMS, Meyer R, Seyffert N, Castro TLP. Diagnosis of bacteria from the CMNR group in farm animals. Comp Immunol Microbiol Infect Dis. 2024; 113: 102230. [DOI:10.1016/j.cimid.2024.102230] [PMID]
57. Xu S, Li Z, Huang Y, Han L, Che Y, Hou X, et al. Whole genome sequencing reveals the genomic diversity, taxonomic classification, and evolutionary relationships of the genus Nocardia. PLoS Negl Trop Dis. 2021; 15 (8): e0009665. [DOI:10.1371/journal.pntd.0009665] [PMID] [PMCID]
58. Jiao M, Ma X, Li Y, Wang H, Liu Y, Guo W, et al. Metagenomic next-generation sequencing provides prognostic warning by identifying mixed infections in nocardiosis. Front Cell Infect Microbiol. 2022; 12: 894678. [DOI:10.3389/fcimb.2022.894678] [PMID] [PMCID]
59. Martínez-Robles S, González-Ballesteros E, Reyes-Esparza J, Trejo-Teniente I, Jaramillo-Loranca BE, Téllez-Jurado A, et al. Effect of β-hydroxy-γ-amino phosphonate (β-HPC) on the hydrolytic activity of Nocardia brasiliensis as determined by FT-IR spectrometry. Front Microbiol. 2023; 14: 1089156. [DOI:10.3389/fmicb.2023.1089156] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.