Volume 13, Issue 3 (9-2025)                   JoMMID 2025, 13(3): 173-176 | Back to browse issues page

Ethics code: not applicable


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyed N. Advancing Leishmania Research: The Role of Novel Technologies in Unraveling Host-Pathogen Dynamic. JoMMID 2025; 13 (3) :173-176
URL: http://jommid.pasteur.ac.ir/article-1-734-en.html
Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (400 Views)
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species and is prevalent in many of the world's tropical and subtropical countries. This neglected disease primarily impacts the tropical and subtropical regions of the world; however, climate change could exacerbate this scenario and lead to the wider dissemination of the disease, a threat amplified by the fact that there is no protective vaccine or immunotherapy available. To address this challenge, controlled human infection models (CHIM) have been developed to delineate the early events following infection. These models leverage single-cell multi-omics technologies and artificial intelligence to generate large-scale data, which is then integrated into a system encompassing parasite heterogeneity and the host immune profile. This approach aims to more precisely deconvolute the intricacies of the host-parasite-vector interplay, potentially leading to the development of more effective vaccines or therapies. This mini-review highlights the role of novel technologies in unraveling host-pathogen dynamic.

 
Full-Text [PDF 776 kb]   (72 Downloads)    
Type of Study: Mini Review | Subject: Infectious diseases and public health
Received: 2025/05/24 | Accepted: 2025/09/10 | Published: 2025/12/2

References
1. Daoudi M, Outammassine A, Amane M, Boussaa S, Boumezzough A. Climate change influences on the potential distribution of the sand fly Phlebotomus sergenti, vector of Leishmania tropica in Morocco. Acta Parasitol. 2022; 67 (2): 858-66. [DOI:10.1007/s11686-022-00533-5] [PMID]
2. Guimaraes-Costa AB, Shannon JP, Waclawiak I, Oliveira J, Meneses C, de Castro W, et al. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun. 2021; 12 (1): 3213. [DOI:10.1038/s41467-021-23002-5] [PMID] [PMCID]
3. Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res. 2024; 123 (1): 6. [DOI:10.1007/s00436-023-08043-7] [PMID]
4. Nandan D, Brar HK, Reiner N. Manipulation of macrophages: emerging mechanisms of leishmaniasis. Front Biosci (Landmark Ed). 2024; 29 (8): 292. [DOI:10.31083/j.fbl2908292] [PMID]
5. Diotallevi A, Bruno F, Castelli G, Persico G, Buffi G, Ceccarelli M, et al. Transcriptional signatures in human macrophage-like cells infected by Leishmania infantum, Leishmania major and Leishmania tropica. PLoS Negl Trop Dis. 2024; 18 (4): e0012085. [DOI:10.1371/journal.pntd.0012085] [PMID] [PMCID]
6. Hadifar S, Masoudzadeh N, Heydari H, Mashayekhi Goyonlo V, Kerachian M, Daneshpazhooh M, et al. Intralesional gene expression profile of JAK-STAT signaling pathway and associated cytokines in Leishmania tropica-infected patients. Front Immunol. 2024; 15: 1436029. [DOI:10.3389/fimmu.2024.1436029] [PMID] [PMCID]
7. Silva EO, Cruz-Borges PF, Jensen BB, Santana RB, Pinheiro FG, Moura HSD, et al. Immunoregulatory effects of soluble antigens of Leishmania sp. in human lymphocytes in vitro. Braz J Biol. 2024; 84: e284001. [DOI:10.1590/1519-6984.284001] [PMID]
8. Aderem A. Systems biology: its practice and challenges. Cell. 2005; 121 (4): 511-3. [DOI:10.1016/j.cell.2005.04.020] [PMID]
9. Yue R, Dutta A. Computational systems biology in disease modeling and control, review and perspectives. NPJ Syst Biol Appl. 2022; 8 (1): 37 [DOI:10.1038/s41540-022-00247-4] [PMID] [PMCID]
10. Veenstra TD. Omics in systems biology: current progress and future outlook. Proteomics. 2021; 21 (3-4): e2000235. [DOI:10.1002/pmic.202000235] [PMID]
11. Li Y, Ma L, Wu D, Chen G. Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Brief Bioinform. 2021; 22 (5): bbab024. [DOI:10.1093/bib/bbab024] [PMID]
12. Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023; 24 (10): 695-713. [DOI:10.1038/s41580-023-00615-w] [PMID] [PMCID]
13. Cui H, Wang C, Maan H, Pang K, Luo F, Duan N, et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat Methods. 2024; 21 (8): 1470-80. [DOI:10.1038/s41592-024-02201-0] [PMID]
14. Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab Chip. 2022; 22 (3): 530-6. [DOI:10.1039/D1LC00731A] [PMID]
15. Ongaro AE, Ndlovu Z, Sollier E, Otieno C, Ondoa P, Street A, et al. Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Lab Chip. 2022; 22 (17): 3122-37. [DOI:10.1039/D2LC00380E] [PMID] [PMCID]
16. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022; 23 (8): 467-91. [DOI:10.1038/s41576-022-00466-9] [PMID] [PMCID]
17. Kim J, Marignani PA. Single-Cell RNA Sequencing Analysis Using Fluidigm C1 Platform for Characterization of Heterogeneous Transcriptomes. Methods Mol Biol. 2022; 2508: 261-278. [DOI:10.1007/978-1-0716-2376-3_19] [PMID]
18. Cheng J, Liao J, Shao X, Lu X, Fan X. Multiplexing methods for simultaneous large-scale transcriptomic profiling of samples at single-cell resolution. Adv Sci. 2021; 8 (17): 2101229. [DOI:10.1002/advs.202101229] [PMID] [PMCID]
19. Suzuki D, Horigome K, Kureha T, Matsui S, Watanabe T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017; 49 (10): 695-702. [DOI:10.1038/pj.2017.39]
20. Bageritz J, Raddi G. Single-Cell RNA Sequencing with Drop-Seq. Methods Mol Biol. 2019; 1979: 73-85. [DOI:10.1007/978-1-4939-9240-9_6] [PMID]
21. Williams CG, Lee HJ, Asatsuma T, Tweedie RV, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022; 14 (1): 68. [DOI:10.1186/s13073-022-01075-1] [PMID] [PMCID]
22. Song HW, Martin J, Shi X, Tyznik AJ. Key Considerations on CITE-Seq for Single-Cell Multiomics. Proteomics. 2025: e202400011. [DOI:10.1002/pmic.202400011] [PMID] [PMCID]
23. Liu Y, DiStasio M, Su G, Asashima H, Enninful A, Qin X, et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat Biotechnol. 2023; 41 (10): 1405-9. [DOI:10.1038/s41587-023-01676-0] [PMID] [PMCID]
24. Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA. The Human Cell Atlas: from vision to reality. Nature. 2017; 550 (7677): 451-453. [DOI:10.1038/550451a] [PMID]
25. Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Osorio JE, et al. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev. 2022; 35 (3): e0000821. [DOI:10.1128/cmr.00008-21] [PMID] [PMCID]
26. Parkash V, Ashwin H, Dey S, Sadlova J, Vojtkova B, Van Bocxlaer K, et al. Safety and reactogenicity of a controlled human infection model of sand fly-transmitted cutaneous leishmaniasis. Nat Med. 2024; 30 (11): 3150-62. [DOI:10.1038/s41591-024-03146-9] [PMID] [PMCID]
27. Ashwin H, Sadlova J, Vojtkova B, Hlouskova K, Jaffe CL, Myler P, et al. Characterization of a new Leishmania major strain for use in a controlled human infection model. Nat Commun. 2021; 12 (1): 215. [DOI:10.1038/s41467-020-20569-3] [PMID] [PMCID]
28. Parkash V, Ashwin H, Dey S, Sadlova J, Vojtkova B, Van Bocxlaer K, et al. Safety, effectiveness, and skin immune response in a controlled human infection model of sand fly transmitted cutaneous leishmaniasis. medRxiv. 2024. doi: 10.1101/2024.04.12.24305492. [DOI:10.1101/2024.04.12.24305492]
29. Parkash V, Kaye PM. Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Rev Vaccines. 2021; 20 (11): 1407-18. [DOI:10.1080/14760584.2021.1991795] [PMID] [PMCID]
30. Kaye PM, Parkash V, Layton AM, Lacey CJN. The Utility of a Controlled Human Infection Model for Developing Leishmaniasis Vaccines. In: Christodoulides M, ed. Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges: Focus on Leprosy, Leishmaniasis, Melioidosis and Tuberculosis. Cham: Springer International Publishing; 2023:263-279. [DOI:10.1007/978-3-031-24355-4_12]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.