Volume 13, Issue 2 (6-2025)                   JoMMID 2025, 13(2): 97-110 | Back to browse issues page

Ethics code: EPHI-IRB-311-2020;Protocol 68/21;V/P/RCS/05/101/2020;IHRERC/020/2021

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teshale A M, Kalayu A A, Beyene D, Tigabu E, Abegaz W E. Molecular Detection and Antibiotic Susceptibility Pattern of Shiga Toxin-Producing Escherichia coli among Children with Diarrhea in Addis Ababa, Gondar, and Harar, Ethiopia. JoMMID 2025; 13 (2) :97-110
URL: http://jommid.pasteur.ac.ir/article-1-729-en.html
Department of Microbiology Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
Abstract:   (91 Views)
Introduction: Shiga toxin-producing Escherichia coli (STEC) is a major cause of pediatric diarrhea globally, yet its burden, molecular characteristics, and antibiotic resistance patterns remain underexplored in low-resource settings like Ethiopia. This study aimed to assess the molecular detection and antibiotic susceptibility pattern of STEC among children with diarrhea in Ethiopia. Methods: A cross-sectional study was conducted between October 2021 and November 2022 in Ethiopia (Addis Ababa, Gondar, and Harar) among 568 children under 15 years of age. Socio-demographic and clinical data were collected using a standardized questionnaire and REDCap software. Stool samples were screened for STEC using ChromSTEC agar. Shiga toxin (stx) and intimin (eae) genes were detected using polymerase chain reaction (PCR). The antibiotic susceptibility profile was determined using the Phoenix M50 machine. Data analysis was performed using R version 4.3.2 for descriptive statistics and logistic regression analysis. Results: The overall prevalence of STEC among children with diarrhea was 12.15% [95% CI: 9.71-15.09], with the higher prevalence among children aged two to five years and those with bloody diarrhea. STEC isolates showed high antimicrobial resistance (AMR), with 46.38% showing multidrug resistance (MDR) and 2.90% classified as extensively drug-resistant (XDR). Additionally, 21.74% of STEC isolates were extended-spectrum beta-lactamase (ESBL) producers, including 12.50% of those harboring the eae gene. Conclusions: This study provides one of the first comprehensive assessments of STEC across pediatric age groups and multiple regions in Ethiopia, revealing high prevalence and antibiotic resistance with regional and seasonal variations. These findings highlight the urgent need for enhanced infection prevention and strengthened antimicrobial stewardship. 
Full-Text [PDF 1626 kb]   (13 Downloads)    
Type of Study: Original article | Subject: Infectious diseases and public health
Received: 2025/04/15 | Accepted: 2025/06/11 | Published: 2025/06/11

References
1. Grace D. Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. FS, 2023;15: 1475-1488. [DOI:10.1007/s12571-023-01391-3]
2. Havelaar A.H, Kirk M.D, Torgerson P.R, et al. Global estimates and regional comparisons of the burden of foodborne disease in 2010. PLOS Medicine, 2015;12: 1-23. [DOI:10.1371/journal.pmed.1001923] [PMID] [PMCID]
3. Misganaw A, Melaku Y.A, Tessema G.A, et al. National disability-adjusted life years (DALYs) for 257 diseases and injuries in Ethiopia, 1990-2015: Findings from the global burden of disease study 2015. Popul. Health Metr. 2017;15: 1-17. [DOI:10.1186/s12963-017-0146-0] [PMID] [PMCID]
4. Galarce N, Sánchez F, Escobar B, et al. Genomic epidemiology of shiga toxin-producing Escherichia coli isolated from the livestock-food-human interface in South America. Animals. 2021; 11:1845. [DOI:10.3390/ani11071845] [PMID] [PMCID]
5. Majowicz S. E, Scallan E, Jones-Bitton A, et al. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. FPD, 2014;11: 447-455. [DOI:10.1089/fpd.2013.1704] [PMID] [PMCID]
6. Havelaar A.H, Sapp A.C, Amaya M.P, et al. Burden of foodborne disease due to bacterial hazards associated with beef, dairy, poultry meat, and vegetables in Ethiopia and Burkina Faso, 2017. FSFS. 2022;1: 6. [DOI:10.3389/fsufs.2022.1024560]
7. Steyert S.R, Sahl J.W, Fraser C.M, et al. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. FCIM. 2012; 2:133. [DOI:10.3389/fcimb.2012.00133] [PMID] [PMCID]
8. Melton-Celsa A. (2014). Shiga toxin (Stx) classification, structure, and function. MS. 2. [DOI:10.1128/microbiolspec.EHEC-0024-2013] [PMID] [PMCID]
9. Lee J.E, Tesh V.L. Shiga toxins and the pathogenesis of hemolytic uremic syndrome. Clin Microbiol Rev. 2019;32.
10. Wang L, Bai X, Ylinen E, et al. Genetic Characterization of Intimin Gene (eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland. Toxins.2023; 15:669. [DOI:10.3390/toxins15120669] [PMID] [PMCID]
11. FAO/WHO STEC Expert Group. Hazard identification and characterization: criteria for categorizing shiga toxin-producing Escherichia coli on a risk basis. J Food Prot. 2019; 82:7-21. [DOI:10.4315/0362-028X.JFP-18-291] [PMID]
12. Bibbal D, Loukiadis E, Kérourédan M, et al. Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157: H7, O26: H11, O103: H2, O111: H8, and O145: H28 in cattle feces. Applied and environmental microbiology. 2014;80: 1177-84. [DOI:10.1128/AEM.03161-13] [PMID] [PMCID]
13. Fan R, Shao K, Yang X, et al. High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle was detected by combining four selective agars. BMC Microbiol. 2019;19: 1-9. [DOI:10.1186/s12866-019-1582-8] [PMID] [PMCID]
14. Vishram B, Jenkins C, Greig DR, et al. The emerging importance of Shiga toxin-producing Escherichia coli other than serogroup O157 in England. J Med Microbiol. 2021;70. [DOI:10.1099/jmm.0.001375]
15. Centers for Disease Control and Prevention. The use of antibiotics in Shiga toxin-producing Escherichia coli (STEC) infections. [Internet]. 2020. Available from: https://www.cdc.gov/ecoli/antibiotics-treatment.html.
16. Simon M, Gerlach RG, Pfeifer Y, et al. Increased zinc levels facilitate phenotypic detection of ceftazidime-avibactam resistance in metallo-β-lactamase-producing Gram-negative bacteria. Front Microbiol. 2022;13. [DOI:10.3389/fmicb.2022.977330] [PMID] [PMCID]
17. Nitschke M, Sayk F, Härtel C, et al. Association between azithromycin therapy and duration of bacterial shedding among patients with Shiga toxin-producing enteroaggregative Escherichia coli O104: H4. Jama. 2012;307: 1046-52. [DOI:10.1001/jama.2012.264] [PMID]
18. Ohara T, Kojio S, Taneike I, et al. Effects of azithromycin on shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrobial agents and chemotherapy. 2002;46: 3478-83. [DOI:10.1128/AAC.46.11.3478-3483.2002] [PMID] [PMCID]
19. Baquero F, Cantón R. Evolutionary biology of drug resistance. Antimicrobial Drug Resistance: Mechanisms of Drug Resistance. 2017;1: 9-36. [DOI:10.1007/978-3-319-46718-4_2]
20. Nastasijevic I, Schmidt JW, Boskovic M, et al. Seasonal prevalence of Shiga toxin-producing Escherichia coli on pork carcasses for three steps of the harvest process at two commercial processing plants in the United States. Applied and environmental microbiology. 2020;87. [DOI:10.1128/AEM.01711-20] [PMID] [PMCID]
21. Canizalez-Roman A, Flores-Villaseñor H.M, Gonzalez-Nuñez E, et al. Surveillance of diarrheagenic Escherichia coli strains isolated from diarrhea cases from children, adults, and elderly at Northwest of Mexico. Front Microbiol. 2016;7. [DOI:10.3389/fmicb.2016.01924] [PMID] [PMCID]
22. Abebe E, Gugsa G, Ahmed M, et al. Occurrence and antimicrobial resistance pattern of Escherichia coli O157: H7 isolated from foods of Bovine origin in Dessie and Kombolcha towns, Ethiopia. PLoS neglected tropical diseases. 2023;17. [DOI:10.1371/journal.pntd.0010706] [PMID] [PMCID]
23. Abdissa R, Haile W, Fite AT, et al. Prevalence of Escherichia coli O157: H7 in beef cattle at slaughter and beef carcasses at retail shops in Ethiopia. BMC infectious diseases.2017;17: 1-6. [DOI:10.1186/s12879-017-2372-2] [PMID] [PMCID]
24. Engda T, Tessema B, Mesifin N, et al. Shiga toxin-producing Escherichia coli O157: H7 among diarrheic patients and their cattle in Amhara National Regional State, Ethiopia. PLoS One. 2023;18. [DOI:10.1371/journal.pone.0295266] [PMID] [PMCID]
25. Getaneh D.K, Hordofa L.O, Ayana D.A, et al. Prevalence of Escherichia coli O157 and associated factors in under-five children in Eastern Ethiopia. PLoS One. 2021; 16: 1-15. [DOI:10.1371/journal.pone.0246024] [PMID] [PMCID]
26. Gutema F.D, Rasschaert G, Agga G.E, et al. Occurrence, molecular characteristics, and antimicrobial resistance of Escherichia coli O157 in cattle, beef, and humans in Bishoftu Town, Central Ethiopia. Foodborne Pathog Dis. 2021;18: 1-7. [DOI:10.1089/fpd.2020.2830] [PMID]
27. Chui L, Christianson S, Alexander D.C, et al. CPHLN recommendations for the laboratory detection of Shiga toxin-producing Escherichia coli (O157 and non-O157). Canada communicable disease report Relieve des maladies transmissible au Canada. 2018; 44: 304-7. [DOI:10.14745/ccdr.v44i11a06] [PMID] [PMCID]
28. CHROMagar. CHROMagar™ STEC: Instructions for use (NT-EXT-058). CHROMagar. Available at: www.CHROMagar.com.
29. BMS. Bio molecular system. Magnetic Induction Cycler, MIC. User Manual Version 1.2. Available at: https://biomolecularsystems.com/mic-pcr.
30. Sigma-Aldrich. (n.d.). Oligonucleotides. Retrieved January 20, 2025, from https://www.sigmaaldrich.com/US/en/products/oligonucleotides.
31. Junior J.C.R, Tamanini R, Soares B.F, et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina: Ciências Agrárias. 2016; 37: 3069-3078. [DOI:10.5433/1679-0359.2016v37n5p3069]
32. ISO/TS 13136. Microbiology of food and animal feed-Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens-Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups. International Organization for Standardization; 2012.
33. BD. (n.d.). Phoenix M50 User Manual. BD. Available at: https://www.bing.com/phoenixm50 user manual.
34. Basak S, Singh P, & Rajurkar M. Multidrug resistant and extensively drug-resistant bacteria: a study. Journal of pathogens. 2016;1. [DOI:10.1155/2016/4065603] [PMID] [PMCID]
35. CLSI. Performance standards for antimicrobial susceptibility testing-Thirty threeth Edition. M100. 2023.
36. REDcap. The Ohio State University Center for Clinical and Translational Science grant support. REDCap | (Research Electronic Data Capture) (osu.edu).
37. Carroll L. How to cite R and R packages. [Internet]. rOpenSci; c2021 [cited 2024 Jun 3]. Available from: https://ropensci.org/blog/2021/11/16/how-to-cite-r-and-r-packages/.
38. Alemayehu A, Maru M, Bewket W, et al. Spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. Environ Syst Res. 2020; 9:1-15. [DOI:10.1186/s40068-020-00184-3]
39. Adugna A, Kibret M, Abera B, et al. Antibiogram of Escherichia coli serotypes isolated from children aged under five with acute diarrhea in Bahir Dar town. African health sciences. 2015; 15: 656-64. [DOI:10.4314/ahs.v15i2.45] [PMID] [PMCID]
40. Alemayehu K, Oljira L, Demena, M et al. Prevalence and Determinants of Diarrheal Diseases among Under‐Five Children in Horo Guduru Wollega Zone, Oromia Region, Western Ethiopia: A Community‐Based Cross‐Sectional Study. Canadian Journal of Infectious Diseases and Medical Microbiology.2021;1. [DOI:10.1155/2021/5547742] [PMID] [PMCID]
41. Belina D, Gobena T, Kebede A, et al. Occurrence of Diarrheagenic Pathogens and Their Coinfection Profiles in Diarrheic Under Five Children and Tracked Human Contacts in Urban and Rural Settings of Eastern Ethiopia. Microbiology Insights. 2023;16. [DOI:10.1177/11786361231196527] [PMID] [PMCID]
42. Thystrup C, Majowicz S.E, Kitila D.B, et al. Etiology-specific incidence and mortality of diarrheal diseases in the African region: a systematic review and meta-analysis. BMC Public Health. 2024;24: 1864. [DOI:10.1186/s12889-024-19334-8] [PMID] [PMCID]
43. Zelelie T.Z, Eguale T, Yitayew B, et al. Molecular epidemiology, and antimicrobial susceptibility of diarrheagenic Escherichia coli isolated from children under age five with and without diarrhea in Central Ethiopia. Plos one.2023;18. [DOI:10.1371/journal.pone.0288517] [PMID] [PMCID]
44. Mulu B.M, Belete M.A, Demlie T.B, et al. Characteristics of pathogenic Escherichia coli associated with diarrhea in children under five years in northwestern Ethiopia. Tropical Medicine and Infectious Disease. 2024;9: 65. [DOI:10.3390/tropicalmed9030065] [PMID] [PMCID]
45. Benyam B.Z, Tesfaye T.S, Belay G, et al. Pathogenic Escherichia coli strains and their antibiotic susceptibility profiles in cases of child diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. 2022;42.
46. Tebejie F, Kabew G, Shumie T, et al. Magnitude of Pathogenic Enteric Bacteria, Associated Factors, and Antimicrobial Susceptibility Pattern among Pediatric Patient with diarrhea in Hiwot Fana Specialized University Hospital, Harar, Eastern Ethiopia. East African Journal of Health and Biomedical Sciences. 2022;6: 43-56.
47. Osman M, Kassem II, Dabboussi F, et al. The indelible toll of enteric pathogens: Prevalence, clinical characterization, and seasonal trends in patients with acute community-acquired diarrhea in disenfranchised communities. PLoS One.2023;18. [DOI:10.1371/journal.pone.0282844] [PMID] [PMCID]
48. Persad A. K, & Lejeune, J. T. Animal reservoirs of Shiga toxin‐producing Escherichia coli. Enterohemorrhagic Escherichia coli and Other Shiga Toxin‐Producing E. coli. 2015:211-230. [DOI:10.1128/9781555818791.ch11]
49. Torti J. F, Cuervo P, Nardello A, et al. Epidemiology and characterization of Shiga toxin-producing Escherichia coli of hemolytic uremic syndrome in Argentina. Cureus. 2021; 13. [DOI:10.7759/cureus.17213] [PMID] [PMCID]
50. Jones G, Mariani-Kurkdjian P, Cointe A, et al. Sporadic Shiga Toxin-Producing Escherichia coli-Associated Pediatric Hemolytic Uremic Syndrome, France, 2012-2021. Emerging Infectious Diseases. 2023;29: 2054. [DOI:10.3201/eid2910.230382] [PMID] [PMCID]
51. Heiman K.E, Mody R.K, Johnson S.D, et al. Escherichia coli O157 outbreaks in the United States, 2003-2012. Emerging infectious diseases. 2015;21: 1293. [DOI:10.3201/eid2108.141364] [PMID] [PMCID]
52. Vally H, Hall G, Dyda A, et al. Epidemiology of Shiga toxin producing Escherichia coli in Australia, 2000-2010. BMC public health. 2012;12: 1-12. [DOI:10.1186/1471-2458-12-63] [PMID] [PMCID]
53. Sang W.K, Oundo V, Schnabel D. Prevalence and genetic characteristics of Shiga toxin-producing Escherichia coli from patients with diarrhea in Nairobi, Kenya. J Infect Dev Ctries. 2012;6: 598-604. [DOI:10.3855/jidc.2082] [PMID]
54. Moeinirad M, Douraghi M, Foroushani A.R, et al. Molecular characterization and prevalence of virulence factor genes of Shiga toxin-producing Escherichia coli (STEC) isolated from diarrheic children. Gene Reports. 2021;1: 25. [DOI:10.1016/j.genrep.2021.101379]
55. Yang X, Sun H, Fan R, et al. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Scientific reports.2020;10: 3275. [DOI:10.1038/s41598-020-60225-w] [PMID] [PMCID]
56. Ventola C. L. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics. 2015;40: 277.
57. Elmonir W, Shalaan S, Tahoun A, et al. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathogens. 2021;13: 1-1. [DOI:10.1186/s13099-021-00402-y] [PMID] [PMCID]
58. Kariuki S, Dougan G. Antibacterial resistance in sub-Saharan Africa: an underestimated emergency. Ann N Y Acad Sci. 2014;1323: 43-55. [DOI:10.1111/nyas.12380] [PMID] [PMCID]
59. Tadesse B.T, Ashley E.A, Ongarello S, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17: 616. [DOI:10.1186/s12879-017-2713-1] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.