Volume 12, Issue 4 (12-2024)                   JoMMID 2024, 12(4): 278-291 | Back to browse issues page

Ethics code: IR.QUMS.REC.1400.078


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khairkhah N, Bolhassani A, Najafipour R, Namvar A, Milani A, Agi E, et al . Inhibition of HPV18 E6/E7 Protein-Expressing HeLa Cell Proliferation Using Optimized De Novo CRISPR/Cas9 Constructs Delivered by the LL-37 Peptide. JoMMID 2024; 12 (4) :278-291
URL: http://jommid.pasteur.ac.ir/article-1-708-en.html
Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran, Pasteur Institute of Iran, Tehran, Iran & Blood Diseases Research Center (BDRC), Iranian Comprehensive Hemophilia Care Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
Abstract:   (191 Views)
Introduction: CRISPR/Cas-mediated gene editing has emerged as a transformative therapeutic modality for targeting oncogenic pathways in cancer. This technology enables precise disruption of oncogenic processes, such as tumor cell migration and invasion, and facilitates targeted tumor eradication. This study employed CRISPR/Cas9-mediated genome editing to disrupt the HPV18 E6 and E7 oncogenes, which are critical drivers of tumorigenesis in HPV-associated cancers. Methods: Optimized single-guide RNA (sgRNA) sequences were designed to target the HPV18 E6 and E7 oncogenes, along with the p105 promoter region, for CRISPR/Cas9-mediated genome editing. The sgRNA sequences were cloned into CRISPR/Cas9 expression vectors. HPV18-positive HeLa cells, were transfected in vitro with the recombinant vectors to assess gene editing efficiency. For the in vivo evaluation, C57BL/6 mice bearing HeLa-derived tumors received intravenous injections of LL-37 peptide-complexed recombinant vectors. The therapeutic efficacy of this approach was quantitatively compared to cisplatin treatment. Results: The dual E6/E7-targeted group exhibited a statistically significant reduction in tumor volume compared to all other groups, including the single E6-targeted group, the single E7-targeted group, the cisplatin-treated group, and the untreated control group (P < 0.05). LL-37 peptide demonstrated efficient delivery of CRISPR/Cas9 vectors into HeLa tumor cells, with an optimal nitrogen-to-phosphate (N/P) ratio of 5: 1, achieving high transfection efficiency without systemic toxicity. Conclusion: These findings establish CRISPR/Cas9-mediated gene editing as a potent therapeutic strategy for HPV-associated tumors and highlight LL-37 as a promising non-viral delivery platform for CRISPR/Cas9 constructs. This study is the first to demonstrate the in vivo efficacy of multiplexed sgRNA delivery targeting HPV18 oncogenes in a preclinical model.
Full-Text [PDF 844 kb]   (34 Downloads)    
Type of Study: Original article | Subject: Host-pathogen interactions and susceptibility factors
Received: 2025/02/25 | Accepted: 2024/12/21 | Published: 2025/03/1

References
1. Muñoz N, Castellsagué X, de González AB, Gissmann L. HPV in the etiology of human cancer. Vaccine. 2006; 24: S1-S10. [DOI:10.1016/j.vaccine.2006.05.115] [PMID]
2. Bruni LAG, Serrano B, Mena M, Collado JJ, Gómez D, Muñoz J, Bosch FX, de Sanjosé S. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. Summary Report 22 October 2021.
3. Santacroce L, Di Cosola M, Bottalico L, Topi S, Charitos IA, Ballini A, Inchingolo F, Cazzolla AP, Dipalma G. Focus on HPV infection and the molecular mechanisms of oral carcinogenesis. Viruses 2021; 13: 559. [DOI:10.3390/v13040559] [PMID] [PMCID]
4. Peng S, Ferrall L, Gaillard S, Wang C, Chi WY, Huang CH, Roden RB, Wu TC, Chang YN, Hung CF. Development of DNA vaccine targeting E6 and E7 proteins of human papillomavirus 16 (HPV16) and HPV18 for immunotherapy in combination with recombinant vaccinia boost and PD-1 antibody. M.Bio. 2021;12: e03224-03220. [DOI:10.1128/mBio.03224-20] [PMID] [PMCID]
5. Bulk S, Berkhof J, Rozendaal L, Daalmeijer N, Gök M, De Schipper F, Van Kemenade F, Snijders P, Meijer C. The contribution of HPV18 to cervical cancer is underestimated using high-grade CIN as a measure of screening efficiency. Br. J. Cancer 2007; 96: 1234-1236. [DOI:10.1038/sj.bjc.6603693] [PMID] [PMCID]
6. Xu Y, Qiu Y, Yuan S, Wang H. Prognostic implication of human papillomavirus types in cervical cancer patients: a systematic review and meta-analysis. Infect. Agents Cancer 2020; 15: 1-9. [DOI:10.1186/s13027-020-00332-5] [PMID] [PMCID]
7. Khairkhah N, Bolhassani A, Najafipour R. Current and future direction in treatment of HPV-related cervical disease. J. Mol. Med. 2022; 100: 829-845. [DOI:10.1007/s00109-022-02199-y] [PMID] [PMCID]
8. Pal A, Kundu R. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front. Microbiol. 2020; 10: 3116. [DOI:10.3389/fmicb.2019.03116] [PMID] [PMCID]
9. Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci. 2021; 267: 118969. [DOI:10.1016/j.lfs.2020.118969] [PMID]
10. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 2014; 450: 1422-1426. [DOI:10.1016/j.bbrc.2014.07.014] [PMID]
11. Jubair L, Fallaha S, McMillan NA. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors. Mol. Ther. 2019; 27: 2091-2099. [DOI:10.1016/j.ymthe.2019.08.012] [PMID] [PMCID]
12. Chen Y, Jiang H, Wang T, He D, Tian R, Cui Z, Tian X, Gao Q, Ma X, Yang, J. In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Research 2020; 178: 104794. [DOI:10.1016/j.antiviral.2020.104794] [PMID]
13. Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 2019; 47: W171-W174. [DOI:10.1093/nar/gkz365] [PMID] [PMCID]
14. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014; 30: 1473-1475. [DOI:10.1093/bioinformatics/btu048] [PMID] [PMCID]
15. Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nature Methods 2014; 11: 122-123. [DOI:10.1038/nmeth.2812] [PMID]
16. Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 2018; 46: W242-W245. [DOI:10.1093/nar/gky354] [PMID] [PMCID]
17. Rajan A, Shrivastava S, Kumar A, Singh AK, Arora PK. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment. Applied Microbiology and Biotechnology 2022; 1-15. [DOI:10.1007/s00253-022-12135-2] [PMID] [PMCID]
18. Khairkhah N, Namvar A, Bolhassani A. Application of cell penetrating peptides as a promising drug carrier to combat viral infections. Mol. Biotechnol. 2023; 1-16. [DOI:10.1007/s12033-023-00679-1] [PMID] [PMCID]
19. Sandgren S, Wittrup A, Cheng F, Jönsson M, Eklund E, Busch S, Belting M. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. Journal of Biological Chemistry 2004; 279: 17951-17956. [DOI:10.1074/jbc.M311440200] [PMID]
20. Khairkhah N, Bolhassani A, Agi E, Namvar A, Nikyar A. Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen. PLoS One 2022; 17: e0268251. [DOI:10.1371/journal.pone.0268251] [PMID] [PMCID]
21. Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating human cathelicidin antimicrobial peptide LL-37 expression may prevent severe COVID-19 inflammatory responses and reduce microthrombosis. Frontiers in Immunology 2022; 13: 880961. [DOI:10.3389/fimmu.2022.880961] [PMID] [PMCID]
22. Büchau AS, Morizane S, Trowbridge J, Schauber J, Kotol P, Bui JD, Gallo RL. The host defense peptide cathelicidin is required for NK cell-mediated suppression of tumor growth. The Journal of Immunology 2010; 184: 369-378. [DOI:10.4049/jimmunol.0902110] [PMID] [PMCID]
23. Yang B, Good D, Mosaiab T, Liu W, Ni G, Kaur J, Liu X, Jessop C, Yang L, Fadhil R. Significance of LL-37 on immunomodulation and disease outcome. BioMed. Research International 2020; 2020: 8349712. [DOI:10.1155/2020/8349712] [PMID] [PMCID]
24. Khairkhah N, Bolhassani A, Rajaei F, Najafipour R. Systemic delivery of specific and efficient CRISPR/Cas9 system targeting HPV16 oncogenes using LL‐37 antimicrobial peptide in C57BL/6 mice. J. Med. Virol. 2023; 95: e28934. [DOI:10.1002/jmv.28934] [PMID]
25. Xiang X, Li C, Chen X, Dou H, Li Y, Zhang X, Luo Y. CRISPR/Cas9-mediated gene tagging: a step-by-step protocol. In CRISPR Gene Editing (Springer) 2019; 255-269. [DOI:10.1007/978-1-4939-9170-9_16] [PMID]
26. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology 2013; 31: 822-826. [DOI:10.1038/nbt.2623] [PMID] [PMCID]
27. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 2009; 10: 1-10. [DOI:10.1186/gb-2009-10-3-r25] [PMID] [PMCID]
28. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754-1760. [DOI:10.1093/bioinformatics/btp324] [PMID] [PMCID]
29. Sadeghian I, Heidari R, Sadeghian S, Raee MJ, Negahdaripour M. Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. European Journal of Pharmaceutical Sciences 2022; 169: 106094. [DOI:10.1016/j.ejps.2021.106094] [PMID]
30. Tripathi S, Wang G, White M, Qi L, Taubenberger J, Hartshorn KL. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One 2015; 10: e0124706. [DOI:10.1371/journal.pone.0124706] [PMID] [PMCID]
31. Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, Wang H, Fitch PM, Schwarze J, Davidson DJ. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 2013; 8: e73659. [DOI:10.1371/journal.pone.0073659] [PMID] [PMCID]
32. Moret I, Peris JE, Guillem VM, Benet M, Revert F, Dası́ F, Crespo A, Aliño SF. Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release 2001; 76: 169-181. [DOI:10.1016/S0168-3659(01)00415-1] [PMID]
33. Sadeghian F, Hosseinkhani S, Alizadeh A, Hatefi A. Design, engineering and preparation of a multi-domain fusion vector for gene delivery. International Journal of Pharmaceutics 2012; 427: 393-399. [DOI:10.1016/j.ijpharm.2012.01.062] [PMID]
34. Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat. Rev. Cancer 2002; 2: 315-319. [DOI:10.1038/nrc775] [PMID]
35. Søndergaard JN, Geng K, Sommerauer C, Atanasoai I, Yin X, Kutter C. Successful delivery of large-size CRISPR/Cas9 vectors in hard-to-transfect human cells using small plasmids. Commun. Biol. 2020; 3: 319. [DOI:10.1038/s42003-020-1045-7] [PMID] [PMCID]
36. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. A rapid and general assay for monitoring endogenous gene modification. In Engineered zinc finger proteins, (Springer) 2010; 247-256. [DOI:10.1007/978-1-60761-753-2_15] [PMID]
37. Skelton D, Satake N, Kohn D. The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Therapy 2001; 8: 1813-1814. [DOI:10.1038/sj.gt.3301586] [PMID]
38. Ansari AM, Ahmed AK, Matsangos AE, Lay F, Born LJ, Marti G, Harmon JW, Sun Z. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and Reports 2016; 12: 553-559. [DOI:10.1007/s12015-016-9670-8] [PMID] [PMCID]
39. Comune M, Rai A, Chereddy KK, Pinto S, Aday S, Ferreira AF, Zonari A, Blersch J, Cunha R, Rodrigues R. Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. J. Controlled Release 2017; 262: 58-71. [DOI:10.1016/j.jconrel.2017.07.007] [PMID]
40. Nikyar A, Bolhassani A, Rouhollah F, Heshmati M. In vitro delivery of HIV-1 Nef-Vpr DNA construct using the human antimicrobial peptide LL-37. Curr Drug Delivery 2022; 19: 1083-1092. [DOI:10.2174/1567201819666220217164055] [PMID]
41. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821. [DOI:10.1126/science.1225829] [PMID] [PMCID]
42. Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer 2022; 21: 64. [DOI:10.1186/s12943-021-01487-4] [PMID] [PMCID]
43. Moreno-Angarita A, Aragón CC, Tobón GJ. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. Journal of Translational Autoimmunity 2020; 3: 100029. [DOI:10.1016/j.jtauto.2019.100029] [PMID] [PMCID]
44. Zhang X, Oglęcka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A. Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochimica et Biophysica Acta (BBA)-Biomembranes 2010; 1798: 2201-2208. [DOI:10.1016/j.bbamem.2009.12.011] [PMID]
45. Chamilos G, Gregorio J, Meller S, Lande R, Kontoyiannis DP, Modlin R, Gilliet M. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood, The Journal of the American Society of Hematology 2012; 120: 3699-3707. [DOI:10.1182/blood-2012-01-401364] [PMID] [PMCID]
46. Yoshiba T, Saga Y, Urabe M, Uchibor R, Matsubara S, Fujiwara H, Mizukami H. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol. Lett. 2019; 17: 2197-2206. [DOI:10.3892/ol.2018.9815] [PMID] [PMCID]
47. Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology 2021; 562: 92-102. [DOI:10.1016/j.virol.2021.07.005] [PMID]
48. Noroozi Z, Shamsara M, Valipour E, Esfandyari S, Ehghaghi A, Monfaredan A, Azizi Z, Motevaseli E, Modarressi MH. Antiproliferative effects of AAV-delivered CRISPR/Cas9-based degradation of the HPV18-E6 gene in HeLa cells. Sci. Rep. 2022; 12: 2224. [DOI:10.1038/s41598-022-06025-w] [PMID] [PMCID]
49. Ehrke-Schulz E, Heinemann S, Schulte L, Schiwon M, Ehrhardt A. Adenoviral vectors armed with papillomavirus oncogene specific CRISPR/Cas9 kill human-papillomavirus-induced cervical cancer cells. Cancers 2020; 12: 1934. [DOI:10.3390/cancers12071934] [PMID] [PMCID]
50. Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J. Controlled Release 2022; 342: 345-361. [DOI:10.1016/j.jconrel.2022.01.013] [PMID]
51. Ye J, Liu E, Yu Z, Pei X, Chen S, Zhang P, Shin MC, Gong J, He H, Yang VC. CPP-assisted intracellular drug delivery, what is next? International Journal of Molecular Sciences 2016; 17: 1892. [DOI:10.3390/ijms17111892] [PMID] [PMCID]
52. Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 2004; 43: 8459-8469. [DOI:10.1021/bi036284s] [PMID]
53. Wu WK, Wang G, Coffelt SB, Betancourt AM, Lee CW, Fan D, Wu K, Yu J, Sung JJ, Cho CH. Emerging roles of the host defense peptide LL‐37 in human cancer and its potential therapeutic applications. International Journal of Cancer 2010; 127: 1741-1747. [DOI:10.1002/ijc.25489] [PMID] [PMCID]
54. Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Frontiers in Oncology 2015; 5: 144. [DOI:10.3389/fonc.2015.00144] [PMID] [PMCID]
55. Coffelt SB, Waterman RS, Florez L, Bentrup KHZ, Zwezdaryk KJ, Tomchuck SL, LaMarca HL, Danka ES, Morris CA, Scandurro AB. Ovarian cancers overexpress the antimicrobial protein hCAP‐18 and its derivative LL‐37 increases ovarian cancer cell proliferation and invasion. International Journal of Cancer 2008; 122: 1030-1039. [DOI:10.1002/ijc.23186] [PMID]
56. Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, Sandstedt B, Rotstein S, Mentaverri R, Sánchez F. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res. 2009; 11: 1-13. [DOI:10.1186/bcr2221] [PMID] [PMCID]
57. Zhou X, Jiang W, Liu Z, Liu S, Liang X. Virus infection and death receptor-mediated apoptosis. Viruses 2017; 9: 316. [DOI:10.3390/v9110316] [PMID] [PMCID]
58. Jiang P, Yue Y. Human papillomavirus oncoproteins and apoptosis. Experimental and Therapeutic Medicine 2014; 7: 3-7 [DOI:10.3892/etm.2013.1374] [PMID] [PMCID]
59. Arjomandnejad M, Muhammadnejad A, Haddadi M, Sherkat KN, Rismanchi S, Amanpour S, Muhammadnejad S. HeLa cell line xenograft tumor as a suitable cervical cancer model: growth kinetic characterization and immunohistochemistry array. Arch. Iran Med. 2014; 17(4): 273-277.
60. Galus R, Wlodarski P, Wlodarski K. Fluvastatin increases heterotopically induced ossicles in mice. Clin. Exp. Pharmacol. Physiol. 2006; 33: 388-390. [DOI:10.1111/j.1440-1681.2006.04380.x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.