Volume 12, Issue 3 (9-2024)                   JoMMID 2024, 12(3): 171-178 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheikholeslami F, Shirzad R, Motevalli F. Variant Cells and Viral Infections: Understanding Cellular Coping Mechanisms. JoMMID 2024; 12 (3) :171-178
URL: http://jommid.pasteur.ac.ir/article-1-699-en.html
WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (154 Views)
Cellular stress, induced by diverse factors including viral infection, reactive oxygen species (ROS), hypoxia, and toxin exposure, disrupts normal cellular function. The endoplasmic reticulum (ER) is pivotal in managing cellular stress, notably through the unfolded protein response (UPR) and ER-associated degradation (ERAD) pathways. This intricate process involves a complex interplay of transcription factors and signaling molecules. During viral infection, cells activate a multifaceted antiviral response, which is specifically modulated by both the virus type and the molecular mechanisms of the host's immune system. For instance, certain viruses like Japanese encephalitis virus (JEV) exploit multiple cellular pathways for replication and propagation. Viral infection can significantly impact cellular processes like autophagy and apoptosis, either promoting or suppressing these pathways. Thus, the cellular response to viral infection represents a dynamic interplay that can either benefit the host or be exploited by the virus for its propagation. For instance, viruses within the Flaviviridae family often preserve host cell viability during early infection to enhance replication, subsequently triggering apoptosis or other cell death mechanisms to facilitate viral dissemination. This review explores the diverse responses of infected cells to various viruses, highlighting the complex molecular strategies employed by both host and pathogen.
 
Full-Text [PDF 996 kb]   (72 Downloads)    
Type of Study: Mini Review | Subject: Host-pathogen interactions and susceptibility factors
Received: 2024/12/9 | Accepted: 2024/09/11 | Published: 2024/12/22

References
1. Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM, Vázquez-Meza H. Mitochondrial calcium: effects of its imbalance in disease. Antioxidants. 2022; 11 (5): 801. [DOI:10.3390/antiox11050801] [PMID] [PMCID]
2. Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017; 13 (11): 681-96. [DOI:10.1038/nrneph.2017.129] [PMID]
3. Ogata M, Hino S-i, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic Reticulum Stress. Mol Cell Biol. 2006; 26 (24): 9220-31. [DOI:10.1128/MCB.01453-06] [PMID] [PMCID]
4. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007; 8 (7): 519-29. [DOI:10.1038/nrm2199] [PMID]
5. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MM. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol. 2019; 26 (11): 1053-62. [DOI:10.1038/s41594-019-0324-9] [PMID] [PMCID]
6. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005; 12 (2): 1542-52. [DOI:10.1038/sj.cdd.4401765] [PMID] [PMCID]
7. Lawen A. Apoptosis-an introduction. Bioessays. 2003; 25 (9): 888-96. [DOI:10.1002/bies.10329] [PMID]
8. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007; 128 (5): 931-46. [DOI:10.1016/j.cell.2006.12.044] [PMID]
9. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MM. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci. 2019; 6: 11. [DOI:10.3389/fmolb.2019.00011] [PMID] [PMCID]
10. Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res. 2017; 57: 1-25. [DOI:10.1016/j.preteyeres.2017.01.002] [PMID] [PMCID]
11. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci. 2010; 30 (50): 16938-48. [DOI:10.1523/JNEUROSCI.1598-10.2010] [PMID] [PMCID]
12. Ghavami S, Cunnington R, Gupta S, Yeganeh B, Filomeno K, Freed D, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015; 6 (3): e1696-e. [DOI:10.1038/cddis.2015.36] [PMID] [PMCID]
13. Hassan M, Selimovic D, Hannig M, Haikel Y, Brodell RT, Megahed M. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: significance for melanoma treatment. World J Exp Med. 2015; 5 (4): 206-17. [DOI:10.5493/wjem.v5.i4.206] [PMID] [PMCID]
14. Honda M, Kaneko S, Shimazaki T, Matsushita E, Kobayashi K, Ping Lh, et al. Hepatitis C virus core protein induces apoptosis and impairs cell‐cycle regulation in stably transformed Chinese hamster ovary cells. Hepatology. 2000; 31 (6): 1351-9. [DOI:10.1053/jhep.2000.7985] [PMID]
15. He C, Levine B. The beclin 1 interactome. Curr Opin Cell Biol. 2010; 22 (2): 140-9. [DOI:10.1016/j.ceb.2010.01.001] [PMID] [PMCID]
16. Christen V, Treves S, Duong FH, Heim MH. Activation of endoplasmic reticulum stress response by hepatitis viruses up‐regulates protein phosphatase 2A. Hepatology. 2007; 46 (2): 558-65. [DOI:10.1002/hep.21611] [PMID]
17. He B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ. 2006; 13 (3): 393-403. [DOI:10.1038/sj.cdd.4401833] [PMID]
18. Perera N, Miller JL, Zitzmann N. The role of the unfolded protein response in dengue virus pathogenesis. Cell Microbiol. 2017; 19 (5): e12734. [DOI:10.1111/cmi.12734] [PMID]
19. Peña J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem. 2011; 286 (16): 14226-36. [DOI:10.1074/jbc.M111.222703] [PMID] [PMCID]
20. Datan E, Roy S, Germain G, Zali N, McLean J, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell death Dis. 2016; 7 (3): e2127. [DOI:10.1038/cddis.2015.409] [PMID] [PMCID]
21. Gurumayum S, Brahma R, Naorem LD, Muthaiyan M, Gopal J, Venkatesan A. ZikaBase: an integrated ZIKV-human interactome Map database. Virology. 2018; 514: 203-10. [DOI:10.1016/j.virol.2017.11.007] [PMID]
22. Alfano C, Gladwyn-Ng I, Couderc T, Lecuit M, Nguyen L. The unfolded protein response: A key player in Zika virus-associated congenital microcephaly. Front Cell Neurosci. 2019; 13: 94. [DOI:10.3389/fncel.2019.00094] [PMID] [PMCID]
23. Wang J, Liu J, Zhou R, Ding X, Zhang Q, Zhang C, et al. Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem Biophys Res Commun. 2018; 497 (2): 619-25. [DOI:10.1016/j.bbrc.2018.02.118] [PMID]
24. Ta HM, Le TM, Ishii H, Takarada‐Iemata M, Hattori T, Hashida K, et al. Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. J Neurochem. 2016; 139 (6): 1124-37. [DOI:10.1111/jnc.13714] [PMID]
25. Tan Z, Zhang W, Sun J, Fu Z, Ke X, Zheng C, et al. ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells. J Neuroinflammation. 2018; 15 (1): 275. [DOI:10.1186/s12974-018-1311-5] [PMID] [PMCID]
26. Limonta D, Jovel J, Kumar A, Airo AM, Hou S, Saito L, et al. Human fetal astrocytes infected with Zika virus exhibit delayed apoptosis and resistance to interferon: implications for persistence. Viruses. 2018; 10 (11): 646. [DOI:10.3390/v10110646] [PMID] [PMCID]
27. O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012; 36 (4): 542-50. [DOI:10.1016/j.immuni.2012.03.014] [PMID] [PMCID]
28. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol. 2009; 186 (2): 255-68. [DOI:10.1083/jcb.200903070] [PMID] [PMCID]
29. Borsa M, Ferreira PL, Petry A, Ferreira LG, Camargo MM, Bou-Habib DC, et al. HIV infection and antiretroviral therapy lead to unfolded protein response activation. Virol J. 2015; 12: 77. [DOI:10.1186/s12985-015-0298-0] [PMID] [PMCID]
30. Gaddy DF, Lyles DS. Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol. 2005; 79 (7): 4170-9. [DOI:10.1128/JVI.79.7.4170-4179.2005] [PMID] [PMCID]
31. Bishnoi S, Tiwari R, Gupta S, Byrareddy SN, Nayak D. Oncotargeting by vesicular stomatitis virus (VSV): advances in cancer therapy. Viruses. 2018; 10 (2): 90. [DOI:10.3390/v10020090] [PMID] [PMCID]
32. Manuse MJ, Briggs CM, Parks GD. Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways. Virology. 2010; 405 (2): 383-9. [DOI:10.1016/j.virol.2010.06.023] [PMID] [PMCID]
33. Vandergaast R, Fredericksen BL. West Nile virus (WNV) replication is independent of autophagy in mammalian cells. PLoS One. 2012; 7 (9): e45800. [DOI:10.1371/journal.pone.0045800] [PMID] [PMCID]
34. Kobayashi S, Orba Y, Yamaguchi H, Takahashi K, Sasaki M, Hasebe R, et al. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Res. 2014; 191: 83-91. [DOI:10.1016/j.virusres.2014.07.016] [PMID]
35. Urbanowski MD, Hobman TC. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J Virol. 2013; 87 (2): 872-81. [DOI:10.1128/JVI.02030-12] [PMID] [PMCID]
36. Lee C-J, Liao C-L, Lin Y-L. Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol. 2005; 79 (13): 8388-99. [DOI:10.1128/JVI.79.13.8388-8399.2005] [PMID] [PMCID]
37. Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, DeFilippis V, et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol. 2007; 81 (20): 10849-60. [DOI:10.1128/JVI.01151-07] [PMID] [PMCID]
38. Joubert P-E, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, et al. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 2012; 209 (5): 1029-47. [DOI:10.1084/jem.20110996] [PMID] [PMCID]
39. Rodrigues R, Paranhos-Baccalà G, Vernet G, Peyrefitte CN. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk. PloS One. 2012; 7 (1): e29712. [DOI:10.1371/journal.pone.0029712] [PMID] [PMCID]
40. Thoulouze M-I, Lafage M, Montano-Hirose JA, Lafon M. Rabies virus infects mouse and human lymphocytes and induces apoptosis. J Virol. 1997; 71 (10): 7372-80. [DOI:10.1128/jvi.71.10.7372-7380.1997] [PMID] [PMCID]
41. Jackson AC, Park H. Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol. 1998; 95 (2): 159-64. [DOI:10.1007/s004010050781] [PMID]
42. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017; 13 (4): 739-53. [DOI:10.1080/15548627.2017.1280220] [PMID] [PMCID]
43. Hosseini Heydarabadi F, Baessi K, Bashar R, Fazeli M, Sheikholeslami F. A phylogenetic study of new rabies virus strains in different regions of Iran. Virus Genes. 2020; 56 (3): 361-8. [DOI:10.1007/s11262-020-01752-6] [PMID]
44. Poorghobadi S, Baesi K, Gharibzadeh S, Shirzad R, Khosravy MS, Fazeli M, et al. Autophagy and unfolded protein response induction: a crosstalk between street rabies virus and the host. Cell Stress Chaperones. 2023: 28 (4): 423-8. [DOI:10.1007/s12192-023-01335-y] [PMID] [PMCID]
45. Heydarabadi FH, Abdoli A, Gharibzadeh S, Sayyah M, Bashar R, Sheikholeslami F. Role of autophagy in nerve cell apoptosis in mice infected with street rabies virus. Arch Virol. 2020; 165 (12): 2857-67. [DOI:10.1007/s00705-020-04815-z] [PMID]
46. Hassan IH, Zhang MS, Powers LS, Shao JQ, Baltrusaitis J, Rutkowski DT, et al. Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem. 2012; 287 (7): 4679-89. [DOI:10.1074/jbc.M111.284695] [PMID] [PMCID]
47. Yeganeh B, Ghavami S, Rahim MN, Klonisch T, Halayko A, Coombs K. Autophagy activation is required for influenza A virus-induced apoptosis and replication. Biochim Biophys Acta Mol Cell Res. 2018; 1865 (2): 364-78. [DOI:10.1016/j.bbamcr.2017.10.014] [PMID]
48. Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, Evans D. Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol. 1994; 68 (6): 3667-73. [DOI:10.1128/jvi.68.6.3667-3673.1994] [PMID] [PMCID]
49. Nailwal H, Sharma S, Mayank AK, Lal SK. The nucleoprotein of influenza A virus induces p53 signaling and apoptosis via attenuation of host ubiquitin ligase RNF43. Cell Death Dis. 2015; 6 (5): e1768. [DOI:10.1038/cddis.2015.131] [PMID] [PMCID]
50. Li B, Gao B, Ye L, Han X, Wang W, Kong L, et al. Hepatitis B virus X protein (HBx) activates ATF6 and IRE1-XBP1 pathways of unfolded protein response. Virus Res. 2007; 124 (1-2): 44-9. [DOI:10.1016/j.virusres.2006.09.011] [PMID]
51. Yang S, Zhu J, Zhou X, Wang H, Li X, Zhao A. Induction of the unfolded protein response (UPR) during pseudorabies virus infection. Vet Microbiol. 2019; 239: 108485. [DOI:10.1016/j.vetmic.2019.108485] [PMID]
52. Yordy B, Iwasaki A. Autophagy in the control and pathogenesis of viral infection. Curr Opin Virol. 2011;1 (3): 196-203. [DOI:10.1016/j.coviro.2011.05.016] [PMID] [PMCID]
53. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 2010;32(2):227-39. [DOI:10.1016/j.immuni.2009.12.006] [PMID] [PMCID]
54. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007; 315 (5817): 1398-401. [DOI:10.1126/science.1136880] [PMID]
55. Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol. 2011; 85 (18): 9414-24. [DOI:10.1128/JVI.00281-11] [PMID] [PMCID]
56. Galindo Barreales I, Hernáez B, Muñoz-Moreno R, Cuesta-Geijo M, Dalmau-Mena I, Alonso C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012;3 (7): e341. [DOI:10.1038/cddis.2012.81] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.