Volume 13, Issue 1 (3-2025)                   JoMMID 2025, 13(1): 30-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amatya N M, Shrestha S, Thapa Magar P, Dhaubadhel R, Tamang S, Pant S. Status of Metallo-β-Lactamase-Producing Organisms in Clinical Samples. JoMMID 2025; 13 (1) :30-38
URL: http://jommid.pasteur.ac.ir/article-1-681-en.html
Department of Medical Microbiology, Nobel College, Kathmandu, Nepal
Abstract:   (115 Views)
Introduction: Carbapenem resistance, due to the production of carbapenemase enzymes in various bacteria, is responsible for numerous outbreaks and is significantly associated with healthcare-associated infections. Metallo-β-lactamases (MBLs) are carbapenemases that hydrolyze all β-lactam antibiotics except monobactams. The most prominent bacteria exhibiting this resistance mechanism include members of the Enterobacteriaceae family and Pseudomonas aeruginosa. Therefore, this study aims to assess the prevalence of MBL production among Gram-negative bacteria at Kirtipur Hospital. Methods: This study was conducted at Kirtipur Hospital from June 26, 2022, to September 28, 2022. Organisms were isolated and identified from clinical samples including urine, blood, wound swabs, sputum, tissues, pus, catheter tips, and other body fluids, following standard laboratory protocols. Carbapenemase production was detected using the modified Carbapenem Inactivation Method (mCIM), with metallo-β-lactamase (MBL) production confirmed by the EDTA-modified Carbapenem Inactivation Method (eCIM) test. Results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, M100, 31st ed., 2021. Results: From 1988 clinical samples, 388 Gram-negative bacteria were isolated, with Escherichia coli, Klebsiella pneumoniae, and P. aeruginosa being the predominant species. Antibiotic susceptibility testing revealed that Amikacin was the most effective against Enterobacteriaceae, exhibiting a susceptibility rate of 84.05%. In contrast, Cefepime was the most effective against non-Enterobacteriaceae Gram-negative bacteria with susceptibility rate of 60%. Screening identified 23.40% (84/359) of isolates as potential carbapenemase producers, with 15.32% (55/359) confirmed as carbapenemase producers via mCIM. Of these, 56.36% (31/55) were MBL producers, representing 8.63% (31/359) of all screened isolates. Among confirmed carbapenemase producers, P. aeruginosa exhibited the highest MBL production rate at 77.78% (7/9 isolates), followed by K. pneumoniae at 73.68% (14/19), E. coli at 41.18% (7/17), C. koseri at 33.33% (2/6), and P. mirabilis at 25% (1/4). Conclusion: This study underscores the significant threat posed by MBL-producing E. coli, K. pneumoniae, and P. aeruginosa in this healthcare setting. Therefore, implementing routine screening for MBL-producing organisms in diagnostic laboratories is crucial for controlling the spread among hospital patients and guiding effective antibiotic therapy.
 
Full-Text [PDF 890 kb]   (37 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2024/09/2 | Accepted: 2025/03/11 | Published: 2025/06/1

References
1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629-55. [DOI:10.1016/S0140-6736(21)02724-0] [PMID]
2. O'Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance; 2014.
3. Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol. 2022; 12: 823684. [DOI:10.3389/fcimb.2022.823684] [PMID] [PMCID]
4. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of Action of Carbapenem Resistance. Antibiotics (Basel). 2022; 11 (3): 342. [DOI:10.3390/antibiotics11030421] [PMID] [PMCID]
5. Bush K. Carbapenemases: Partners in crime. J Glob Antimicrob Resist. 2013; 1 (1): 7-16. [DOI:10.1016/j.jgar.2013.01.005] [PMID]
6. Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022; 22 (1): e28-e34. [DOI:10.1016/S1473-3099(20)30868-9] [PMID]
7. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991; 35 (1): 147-51. [DOI:10.1128/AAC.35.1.147] [PMID] [PMCID]
8. Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob Agents Chemother. 2020; 64 (10): e00398-20. [DOI:10.1128/AAC.00397-20] [PMID] [PMCID]
9. Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, et al. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol. 2022; 12: 1048633. [DOI:10.3389/fcimb.2022.1048633] [PMID] [PMCID]
10. Persoon MC, Voor In't Holt AF, Wielders CCH, Gommers D, Vos MC, Severin JA. Mortality associated with carbapenem-susceptible and Verona Integron-encoded Metallo-β-lactamase-positive Pseudomonas aeruginosa bacteremia. Antimicrob Resist Infect Control. 2020; 9 (1): 25. [DOI:10.1186/s13756-020-0682-4] [PMID] [PMCID]
11. Shrestha A, Acharya J, Amatya J, Paudyal R, Rijal N. Detection of Beta-Lactamases (ESBL and MBL) Producing Gram-Negative Pathogens in National Public Health Laboratory of Nepal. Int J Microbiol. 2022; 2022: 5474388. [DOI:10.1155/2022/5474388] [PMID] [PMCID]
12. Dawadi P, Khadka C, Shyaula M, Syangtan G, Joshi TP, Pepper SH, et al. Prevalence of metallo-β-lactamases as a correlate of multidrug resistance among clinical Pseudomonas aeruginosa isolates in Nepal. Sci Total Environ. 2022; 850: 157975. [DOI:10.1016/j.scitotenv.2022.157975] [PMID]
13. Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW, editors. Manual of Clinical Microbiology. 11th ed. Washington, D.C.: ASM Press; 2015. [DOI:10.1128/9781555817381]
14. Leber AL, editor. Clinical Microbiology Procedures Handbook. 4th ed. Washington, DC: American Society for Microbiology; 2016. [DOI:10.1128/9781555818814]
15. Tille P. Bailey & Scott's Diagnostic Microbiology. 15th ed. St. Louis, MO: Elsevier Health Sciences; 2021.
16. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Thirty-First Informational Supplement. CLSI document M100-S31. Wayne, PA: CLSI; 2021.
17. Sah RSP, Dhungel B, Yadav BK, Adhikari N, Thapa Shrestha U, Lekhak B, et al. Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. Diseases (Basel). 2021; 9 (1): 15. [DOI:10.3390/diseases9010015] [PMID] [PMCID]
18. Pariyar M, Adhikari S, Regmi RS, Dhungel B, Banjara MR, Rijal BP, et al. Beta-Lactamase-Producing Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol Insights. 2023; 16: 11786361221150761. [DOI:10.1177/11786361221150761] [PMID] [PMCID]
19. Mahto M, Shah A, Show KL, Moses FL, Stewart AG. Pseudomonas aeruginosa in Nepali hospitals: poor outcomes amid 10 years of increasing antimicrobial resistance. Public Health Action. 2021; 11 (Suppl 1): S58-S63. [DOI:10.5588/pha.21.0048] [PMID] [PMCID]
20. Mahto M, Chaudhary M, Shah A, Show KL, Moses FL, Stewart AG. High antibiotic resistance and mortality with Acinetobacter species in a tertiary hospital, Nepal. Public Health Action. 2021; 11 (Suppl 1): S13-S17. [DOI:10.5588/pha.21.0036] [PMID] [PMCID]
21. Sherchan JB. Antibiotic susceptibility pattern and risk factors associated with Acinetobacter and Pseudomonas infection at a tertiary care hospital. J Kathmandu Med Coll. 2021; 10 (35): 4-10. [DOI:10.3126/jkmc.v10i1.38945]
22. Gao F, Xiong Z, Liang B, Huang Z, Deng Q, Wang J, et al. Molecular Characterization and Epidemiology of Carbapenem-Resistant Enterobacteriaceae Isolated from Pediatric Patients in Guangzhou, Southern China. Can J Infect Dis Med Microbiol. 2023; 2023: 4762143. [DOI:10.1155/2023/4762143] [PMID] [PMCID]
23. Ko W, Tseng S, Chou C, Li T, Li R, Zhang Y, et al. Molecular epidemiology and comparative genomics of carbapenemase-producing Escherichia coli isolates from 19 tertiary hospitals in China from 2019 to 2020. Front Microbiol. 2023; 14: 1056399. [DOI:10.3389/fmicb.2023.1056399] [PMID] [PMCID]
24. Zhao Y, Liao Y, Zhang N, Liu S, Zhang J, Hu X, et al. Four Types of ST11 Novel Mutations From Increasing Carbapenem-Resistant Klebsiella pneumoniae in Guangdong, 2016-2020. Front Microbiol. 2021; 12: 702941. [DOI:10.3389/fmicb.2021.702941] [PMID] [PMCID]
25. Seyedi M, Yousefi F, Naeimi B, Tajbakhsh S. Phenotypic and genotypic investigation of metallo-β-lactamases in Pseudomonas aeruginosa clinical isolates in Bushehr, Iran. Iran J Basic Med Sci. 2022; 25 (10): 1196-200.
26. Kulkarni SS, Mulay MV. Phenotypic detection of metallo-beta-lactamase production in clinical isolates of Escherichia coli and Klebsiella pneumoniae in a tertiary care hospital. MGM J Med Sci. 2022; 9 (2): 149-53. [DOI:10.4103/mgmj.mgmj_12_22]
27. Chauhan K, Pandey A, Asthana AK, Madan M. Evaluation of phenotypic tests for detection of Klebsiella pneumoniae carbapenemase and metallo-beta-lactamase in clinical isolates of Escherichia coli and Klebsiella species. Indian J Pathol Microbiol. 2015; 58 (1): 31-5. [DOI:10.4103/0377-4929.151168] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.