Volume 12, Issue 4 (12-2024)                   JoMMID 2024, 12(4): 299-311 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Basardeh E, Nazari F, Fateh A, Siadat S D, Oghalaie A, Azizi M et al . Two Novel Single-Chain Variable Fragments, EB211 and EB279, Exert Antibacterial Activity Against Acinetobacter baumannii by Destabilizing the Outer Membrane. JoMMID 2024; 12 (4) :299-311
URL: http://jommid.pasteur.ac.ir/article-1-678-en.html
Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (224 Views)
Introduction: Acinetobacter baumannii is notorious for its high resistance levels, and the development of clinically effective antimicrobial agents is an urgent medical challenge. Single-chain variable fragments (scFvs) that exhibit antibacterial properties against challenging pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, have the potential to improve therapeutic strategies significantly. Their unique ability to function independently of the host immune system makes scFvs a highly promising option for effective treatment. In our previous studies, we identified two human scFvs (EB211 and EB279) that showed direct growth inhibition activity against A. baumannii strains in vitro and therapeutic effectiveness in immunocompromised mice with pneumonia caused by an extensively drug-resistant A. baumannii strain. In the present study, we endeavored to demonstrate how EB211 and EB279 could inhibit the growth of A. baumannii. Methods: A. baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa strains were individually incubated with the scFv in the presence of a high concentration of magnesium (MgSO4; 20 mM). Epitope mapping and immunoblotting were conducted to identify A. baumannii proteins likely bound by EB211 and EB279. Results: It was found that EB211 and EB279, similar to colistin sulfate, lost their activity in the presence of magnesium. Moreover, immunoblotting revealed that EB211 and EB279 might bind the OprD family outer membrane porin and TonB family C-terminal domain protein, respectively. Conclusion: EB211 and EB279 elicit direct growth inhibitory activity against A. baumannii without needing immune cells or complements, which could be helpful for immunocompromised patients.
 
Full-Text [PDF 937 kb]   (71 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2024/08/13 | Accepted: 2024/12/21 | Published: 2025/03/1

References
1. Basardeh E, Piri-Gavgani S, Soltanmohammadi B, Ghanei M, Omrani MD, Soezi M, et al. Anti-Acinetobacter baumannii single-chain variable fragments show direct bactericidal activity. Iran J Basic Med Sci. 2022; 25 (9): 1141-9.
2. Whiteway C, Breine A, Philippe C, Van der Henst C. Acinetobacter baumannii. Trends Microbiol. 2022; 30 (2): 199-200. [DOI:10.1016/j.tim.2021.11.008] [PMID]
3. Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021; 50 (13): 7820-80. [DOI:10.1039/D0CS00729C] [PMID] [PMCID]
4. Soltanmohammadi B, Piri-Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, et al. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology. 2021; 10 (7): e1302. [DOI:10.1002/cti2.1302] [PMID] [PMCID]
5. Smart M, Rajagopal A, Liu WK, Ha BY. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E. 2017; 96 (4-1): 042405. [DOI:10.1103/PhysRevE.96.042405] [PMID]
6. Huang W, Zhang Q, Li W, Chen Y, Shu C, Li Q, et al. Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii. Front Microbiol. 2019;10:1379. [DOI:10.3389/fmicb.2019.01379] [PMID] [PMCID]
7. Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol. 2023; 13: 1053968. [DOI:10.3389/fcimb.2023.1053968] [PMID] [PMCID]
8. Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther. 2022; 47 (11): 1875-84. [DOI:10.1111/jcpt.13787] [PMID]
9. Hua M, Liu J, Du P, Liu X, Li M, Wang H, et al. The novel outer membrane protein from OprD/Occ family is associated with hypervirulence of carbapenem resistant Acinetobacter baumannii ST2/KL22. Virulence. 2021; 12 (1): 1-11. [DOI:10.1080/21505594.2020.1856560] [PMID] [PMCID]
10. Mortensen BL, Skaar EP. The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Front Cell Infect Microbiol. 2013; 3: 95. [DOI:10.3389/fcimb.2013.00095] [PMID] [PMCID]
11. Jahangiri A, Owlia P, Rasooli I, Salimian J, Derakhshanifar E, Aghajani Z, et al. Specific egg yolk immunoglobulin as a promising non-antibiotic biotherapeutic product against Acinetobacter baumannii pneumonia infection. Sci Rep. 2021; 11 (1): 1914. [DOI:10.1038/s41598-021-81356-8] [PMID] [PMCID]
12. Nielsen TB, Pantapalangkoor P, Luna BM, Bruhn KW, Yan J, Dekitani K, et al. Monoclonal antibody protects against Acinetobacter baumannii infection by enhancing bacterial clearance and evading sepsis. J Infect Dis. 2017; 216 (4): 489-501. [DOI:10.1093/infdis/jix315] [PMID] [PMCID]
13. Russo TA, Beanan JM, Olson R, MacDonald U, Cox AD, St. Michael F, et al. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun. 2013; 81 (3): 915-22. [DOI:10.1128/IAI.01184-12] [PMID] [PMCID]
14. Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Russo TA, Balthasar JP. Antibody dependent enhancement of Acinetobacter baumannii infection in a mouse pneumonia model. J Pharmacol Exp Ther. 2019; 368 (3): 475-89. [DOI:10.1124/jpet.118.253617] [PMID]
15. Richard G, MacKenzie CR, Henry KA, Vinogradov E, Hall JC, Hussack G. Antibody binding to the O-specific antigen of Pseudomonas aeruginosa O6 inhibits cell growth. Antimicrob Agents Chemother. 2020; 64 (4): e02168-19. [DOI:10.1128/AAC.02168-19] [PMID] [PMCID]
16. Richard G. Investigating the bactericidal mechanism of anti-LPS antibodies against Pseudomonas aeruginosa Serotype O6. Ontario, Canada: University of Guelph; 2017.
17. LaRocca TJ, Katona LI, Thanassi DG, Benach JL. Bactericidal action of a complement-independent antibody against relapsing fever Borrelia resides in its variable region. J Immunol. 2008; 180 (9): 6222-8. [DOI:10.4049/jimmunol.180.9.6222] [PMID]
18. Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, et al. Anti-Acinetobacter baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol. 2024; 24 (1): 55. [DOI:10.1186/s12866-023-03080-9] [PMID] [PMCID]
19. Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, et al. Single-chain variable fragment-based bispecific antibodies: Hitting two targets with one sophisticated arrow. Mol Ther Oncolytics. 2019; 14: 38-56. [DOI:10.1016/j.omto.2019.02.004] [PMID] [PMCID]
20. Xie X, McLean MD, Hall JC. Antibody-dependent cell-mediated cytotoxicity-and complement-dependent cytotoxicity-independent bactericidal activity of an IgG against Pseudomonas aeruginosa O6ad. J Immunol. 2010; 184 (7): 3725-33. [DOI:10.4049/jimmunol.0902732] [PMID]
21. Irani N, Basardeh E, Samiee F, Fateh A, Shooraj F, Rahimi A, et al. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog. 2018; 121: 310-7. [DOI:10.1016/j.micpath.2018.05.051] [PMID]
22. Pazhouhandeh M, Samiee F, Boniadi T, Khedmat AF, Vahedi E, Mirdamadi M, et al. Comparative network analysis of patients with non-small cell lung cancer and smokers for representing potential therapeutic targets. Sci Rep. 2017; 7 (1): 13812. [DOI:10.1038/s41598-017-14195-1] [PMID] [PMCID]
23. Pazhouhandeh M, Sahraian MA, Siadat SD, Fateh A, Vaziri F, Tabrizi F, et al. A systems medicine approach reveals disordered immune system and lipid metabolism in multiple sclerosis patients. Clin Exp Immunol. 2018; 192 (1): 18-32. [DOI:10.1111/cei.13087] [PMID] [PMCID]
24. Dorsey CW, Tomaras AP, Connerly PL, Tolmasky ME, Crosa JH, Actis LA. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology. 2004; 150 (11): 3657-67. [DOI:10.1099/mic.0.27371-0] [PMID]
25. Yasir M, Dutta D, Willcox MDP. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci Rep. 2019; 9 (1): 7063. [DOI:10.1038/s41598-019-42440-2] [PMID] [PMCID]
26. Hancock RE. The bacterial outer membrane as a drug barrier. Trends Microbiol. 1997; 5 (1): 37-42. [DOI:10.1016/S0966-842X(97)81773-8] [PMID]
27. LaRocca TJ, Holthausen DJ, Hsieh C, Renken C, Mannella CA, Benach JL. The bactericidal effect of a complement-independent antibody is osmolytic and specific to Borrelia. Proc Natl Acad Sci U S A. 2009; 106 (26): 10752-7. [DOI:10.1073/pnas.0901858106] [PMID] [PMCID]
28. Rasul R. Novel antimicrobial biomaterials. Optometry & Vision Science, Faculty of Science, University of New South Wales. 2010.
29. Wu G, Ding J, Li H, Li L, Zhao R, Shen Z, et al. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr Microbiol. 2008; 57 (6): 552-7. [DOI:10.1007/s00284-008-9241-6] [PMID]
30. Hancock R, Wong P. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 1984; 26 (1): 48-52. [DOI:10.1128/AAC.26.1.48] [PMID] [PMCID]
31. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol. 1992; 73 (6): 472-9. [DOI:10.1111/j.1365-2672.1992.tb05007.x] [PMID]
32. Wang Y, Wang L, Yang H, Xiao H, Farooq A, Liu Z, et al. The spider venom peptide lycosin-II has potent antimicrobial activity against clinically isolated bacteria. Toxins. 2016; 8 (5): 119. [DOI:10.3390/toxins8050119] [PMID] [PMCID]
33. Zhu X, Dong N, Wang Z, Ma Z, Zhang L, Ma Q, et al. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater. 2014; 10 (1): 244-57. [DOI:10.1016/j.actbio.2013.08.043] [PMID]
34. Dubashynskaya NV, Skorik YA. Polymyxin delivery systems: recent advances and challenges. Pharmaceuticals (Basel). 2020; 13 (5): 83. [DOI:10.3390/ph13050083] [PMID] [PMCID]
35. Catel-Ferreira M, Nehme R, Molle V, Aranda J, Bouffartigues E, Chevalier S, et al. Deciphering the function of the outer membrane protein OprD homologue of Acinetobacter baumannii. Antimicrob Agents Chemother. 2012; 56 (7): 3826-32. [DOI:10.1128/AAC.06022-11] [PMID] [PMCID]
36. Uppalapati SR, Sett A, Pathania R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020; 11: 589234. [DOI:10.3389/fmicb.2020.589234] [PMID] [PMCID]
37. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021; 10 (3): 373. [DOI:10.3390/pathogens10030373] [PMID] [PMCID]
38. Rodrigues-Costa F, Cayo R, Matos AP, Girardello R, Martins W, Carrara-Marroni FE, et al. Temporal evolution of Acinetobacter baumannii ST107 clone: conversion of blaOXA-143 into blaOXA-231 coupled with mobilization of ISAba1 upstream occAB1. Res Microbiol. 2019; 170 (1): 53-9. [DOI:10.1016/j.resmic.2018.07.001] [PMID]
39. Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-dependent transporters in vaccine development of gram-negative bacteria. Front Cell Infect Microbiol. 2020; 10: 589115. [DOI:10.3389/fcimb.2020.589115] [PMID] [PMCID]
40. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med. 2016; 22 (12): 1077-90. [DOI:10.1016/j.molmed.2016.10.005] [PMID] [PMCID]
41. Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, et al. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathogens. 2012; 8 (12): e1003068. [DOI:10.1371/journal.ppat.1003068] [PMID] [PMCID]
42. Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: the role of ATP-binding cassette (ABC) importers in pathogenesis. Biochim Biophys Acta Biomembr. 2018; 1860 (4): 868-77. [DOI:10.1016/j.bbamem.2017.08.011] [PMID] [PMCID]
43. Booth IR, Blount P. The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol. 2012; 194 (18): 4802-9. [DOI:10.1128/JB.00576-12] [PMID] [PMCID]
44. Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012; 25 (4): 661-81. [DOI:10.1128/CMR.00043-12] [PMID] [PMCID]
45. Piepenbrink KH, Lillehoj E, Harding CM, Labonte JW, Zuo X, Rapp CA, et al. Structural diversity in the type IV pili of multidrug-resistant Acinetobacter. J Biol Chem. 2016; 291 (44): 22924-35. [DOI:10.1074/jbc.M116.751099] [PMID] [PMCID]
46. Fernando DM, Kumar A. Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics (Basel). 2013; 2 (1): 163-81. [DOI:10.3390/antibiotics2010163] [PMID] [PMCID]
47. Cabral MP, Soares NC, Aranda J, Parreira JR, Rumbo C, Poza M, et al. Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism. J Proteome Res. 2011; 10 (8): 3399-417. [DOI:10.1021/pr101299j] [PMID]
48. Zahn M, Bhamidimarri SP, Baslé A, Winterhalter M, Van den Berg B. Structural insights into outer membrane permeability of Acinetobacter baumannii. Structure. 2016; 24 (2): 221-31. [DOI:10.1016/j.str.2015.12.009] [PMID]
49. Smani Y, Pachon J. Loss of the OprD homologue protein in Acinetobacter baumannii: impact on carbapenem susceptibility. Antimicrob Agents Chemother. 2013; 57 (1): 677. [DOI:10.1128/AAC.01277-12] [PMID] [PMCID]
50. Dupont M, Pages JM, Lafitte D, Siroy A, Bollet C. Identification of an OprD homologue in Acinetobacter baumannii. J Proteome Res. 2005; 4 (6): 2386-90. [DOI:10.1021/pr050143q] [PMID]
51. Fernandez-Cuenca F, Smani Y, Gomez-Sanchez MC, Docobo-Perez F, Caballero-Moyano FJ, Dominguez-Herrera J, et al. Attenuated virulence of a slow-growing pandrug-resistant Acinetobacter baumannii is associated with decreased expression of genes encoding the porins CarO and OprD-like. Int J Antimicrob Agents. 2011; 38 (6): 548-9. [DOI:10.1016/j.ijantimicag.2011.08.002] [PMID]
52. Asai S, Umezawa K, Iwashita H, Ohshima T, Ohashi M, Sasaki M, et al. An outbreak of blaOXA-51-like- and blaOXA-66-positive Acinetobacter baumannii ST208 in the emergency intensive care unit. J Med Microbiol. 2014; 63 (Pt 11): 1517-23. [DOI:10.1099/jmm.0.077503-0] [PMID] [PMCID]
53. Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochim Biophys Acta. 2014; 1843 (8): 1717-31. [DOI:10.1016/j.bbamcr.2014.04.010] [PMID]
54. Killmann H, Videnov G, Jung G, Schwarz H, Braun V. Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. J Bacteriol. 1995; 177 (3): 694-8. [DOI:10.1128/jb.177.3.694-698.1995] [PMID] [PMCID]
55. Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol. 2005; 187 (24): 8300-11. [DOI:10.1128/JB.187.24.8300-8311.2005] [PMID] [PMCID]
56. Schauer K, Gouget B, Carriere M, Labigne A, de Reuse H. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. 2007; 63 (4): 1054-68. [DOI:10.1111/j.1365-2958.2006.05578.x] [PMID]
57. Yep A, McQuade T, Kirchhoff P, Larsen M, Mobley HL. Inhibitors of TonB function identified by a high-throughput screen for inhibitors of iron acquisition in uropathogenic Escherichia coli CFT073. mBio. 2014; 5 (2): e01089-13. [DOI:10.1128/mBio.01089-13] [PMID] [PMCID]
58. Chu BC, Peacock RS, Vogel HJ. Bioinformatic analysis of the TonB protein family. BioMetals. 2007; 20 (3-4): 467-83. [DOI:10.1007/s10534-006-9049-4] [PMID]
59. Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun. 2001; 69 (10): 6179-85. [DOI:10.1128/IAI.69.10.6179-6185.2001] [PMID] [PMCID]
60. Zimbler DL, Arivett BA, Beckett AC, Menke SM, Actis LA. Functional features of TonB energy transduction systems of Acinetobacter baumannii. Infect Immun. 2013; 81 (9): 3382-94. [DOI:10.1128/IAI.00540-13] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.