Volume 13, Issue 2 (6-2025)                   JoMMID 2025, 13(2): 147-155 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pookkottu Madom S, K Jose R, Balachandran S, KS D, A Mathews A. Antimicrobial Susceptibility Trends in Uropathogens: A 6-Year Retrospective Study from Kerala, India. JoMMID 2025; 13 (2) :147-155
URL: http://jommid.pasteur.ac.ir/article-1-677-en.html
Department of Microbiology, Government Medical College, Palakkad, Kerala, India
Abstract:   (90 Views)
Introduction: Antimicrobial resistance (AMR) among uropathogens is a critical global public health challenge, potentially exacerbated by the COVID-19 pandemic. This study evaluates the pandemic’s impact on antimicrobial susceptibility trends among uropathogens at a tertiary care center in Kerala over six years (2018–2023). Methods: A retrospective analysis of 4,461 uropathogen isolates was conducted using data from laboratory records. Data were analyzed using IBM SPSS Statistics version 20, with Chi-square tests for associations. Results: Escherichia coli was the predominant pathogen (57.4%), followed by Klebsiella pneumoniae (14.3%) and Enterococcus spp. (6.0%). Other common isolates included Pseudomonas aeruginosa (4.2%) and Acinetobacter baumannii (3.3%), and fungi (6.8%). E. coli susceptibility to ampicillin increased significantly from 3.4% in 2018 to 13.9% in 2023 (P< 0.001), though overall resistance remained high; while susceptibility to cefoperazone-sulbactam and piperacillin-tazobactam declined (P< 0.001). K. pneumoniae susceptibility to cefoperazone-sulbactam decreased from 88.7% in 2018 to 73.0% in 2023 (P< 0.001). Enterococcus spp. susceptibility to nitrofurantoin declined from 91.0% in 2018 to 67.4% in 2023 (P = 0.017). A. baumannii showed increased ceftazidime susceptibility from 18.4% in 2018 to 56.0% in 2022, followed by a decline to 27.8% in 2023 (P = 0.015). P. aeruginosa exhibited increased susceptibility to gentamicin (57.6% to 77.2%; P = 0.012), ceftazidime (61.6% to 77.2%; P = 0.043), and fluoroquinolones (53.9% to 68.1%; P = 0.019) from 2018 to 2023. Conclusion: This study highlights dynamic shifts in antimicrobial susceptibility patterns among uropathogens, underscoring the need for continuous surveillance to guide empirical therapy and infection control strategies. Further research is warranted to explore contributing factors, including pandemic-related practices.
Full-Text [PDF 1277 kb]   (23 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2024/08/6 | Accepted: 2025/06/11 | Published: 2025/06/11

References
1. Wanke-Rytt M, Sobierajski T, Lachowicz D, Seliga-Gąsior D, Podsiadły E. Analysis of etiology of community-acquired and nosocomial urinary tract infections and antibiotic resistance of isolated strains: results of a 3-year surveillance (2020-2022) at the Pediatric Teaching Hospital in Warsaw. Microorganisms. 2023; 11 (6): 1438. [DOI:10.3390/microorganisms11061438] [PMID] [PMCID]
2. Kawalec A, Józefiak J, Kiliś-Pstrusińska K. Urinary tract infection and antimicrobial resistance patterns: 5-year experience in a tertiary pediatric nephrology center in the southwestern region of Poland. Antibiotics (Basel). 2023; 12 (9): 1454. [DOI:10.3390/antibiotics12091454] [PMID] [PMCID]
3. Young AM, Tanaka MM, Yuwono C, Wehrhahn MC, Zhang L. Clinical setting comparative analysis of uropathogens and antibiotic resistance: a retrospective study spanning the COVID-19 pandemic. Open Forum Infect Dis. 2024; 11: ofad676. [DOI:10.1093/ofid/ofad676] [PMID] [PMCID]
4. Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B. Enterococcal urinary tract infections: a review of the pathogenicity, epidemiology, and treatment. Antibiotics (Basel). 2023; 12 (4): 778. [DOI:10.3390/antibiotics12040778] [PMID] [PMCID]
5. Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host-pathogen interactions. Cell Surf. 2022; 8: 100075. [DOI:10.1016/j.tcsw.2022.100075] [PMID] [PMCID]
6. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629-55. [DOI:10.1016/S0140-6736(21)02724-0] [PMID]
7. Nandi A, Pecetta S, Bloom DE. Global antibiotic use during the COVID-19 pandemic: analysis of pharmaceutical sales data from 71 countries, 2020-2022. EClinicalMedicine. 2023; 57: 101848. [DOI:10.1016/j.eclinm.2023.101848] [PMID] [PMCID]
8. Romaszko-Wojtowicz A, Tokarczyk-Malesa K, Doboszyńska A, Glińska-Lewczuk K. Impact of COVID-19 on antibiotic usage in primary care: a retrospective analysis. Sci Rep. 2024; 14 (1): 4798. [DOI:10.1038/s41598-024-55540-5] [PMID] [PMCID]
9. Tang HJ, Lai CC, Chao CM. Changing epidemiology of respiratory tract infection during COVID-19 pandemic. Antibiotics (Basel). 2022; 11 (3): 315. [DOI:10.3390/antibiotics11030315] [PMID] [PMCID]
10. Venugopal S, Chunchanur S, Panigrahy R, Tak V, Yadav M, Chauhan A, et al. Changes in antimicrobial resistance of Escherichia coli isolated from community-associated urinary tract infection before and during the COVID-19 pandemic in India. J Glob Antimicrob Resist. 2024; 37: 165-7. [DOI:10.1016/j.jgar.2024.02.022] [PMID]
11. Langford BJ, Soucy JPR, Leung V, So M, Kwan ATH, Portnoff JS, et al. Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis. ClinMicrobiol Infect. 2023; 29 (3): 302-9. [DOI:10.1016/j.cmi.2022.12.006] [PMID] [PMCID]
12. Chanapal A, Cheng HY, Lambert H, Cong W. Antibiotic prescribing and bacterial infection in COVID-19 inpatients in Southeast Asia: a systematic review and meta-analysis. JAC Antimicrob Resist. 2024; 6 (3): dlae093. [DOI:10.1093/jacamr/dlae093] [PMID] [PMCID]
13. Wan Z, Wang Y, Liang J, Cao Y, Lu R, Zhang C. COVID-19 public health measures reduce the incidence of respiratory infectious diseases. J Infect Dev Ctries. 2022; 16 (4): 600-3. [DOI:10.3855/jidc.15898] [PMID]
14. Sharma B, Mohan B, Sharma R, Lakhanpal V, Shankar P, Singh SHK, et al. Evaluation of an automated rapid urine culture method for urinary tract infection: comparison with gold standard conventional culture method. Indian J Med Microbiol. 2023; 42: 19-24. [DOI:10.1016/j.ijmmb.2023.01.003] [PMID]
15. Yadigaroglu M, Gorgun S, Yucel M, Guzel M. The effect of the COVID-19 pandemic on urine culture results and resistance to antibiotics in the emergency department. Clin Lab. 2022; 68 (6): 1156-62. [DOI:10.7754/Clin.Lab.2021.211012] [PMID]
16. Mohapatra S, Panigrahy R, Tak V, Shwetha JV, Sneha KC, Chaudhuri S, et al. Prevalence and resistance pattern of uropathogens from community settings of different regions: an experience from India. Access Microbiol. 2022; 4 (2): 000321. [DOI:10.1099/acmi.0.000321] [PMID] [PMCID]
17. Meena S, Bharti G, Mathur P. Pre- and post-COVID-19 appraisal of antimicrobial susceptibility for urinary tract infections at an outpatient setting of a tertiary care hospital in Delhi. Cureus. 2023; 15 (10): e47095. [DOI:10.7759/cureus.47095]
18. Sah BK, Dahal P, Mallik SK, Paul AD, Mainali U, Shah CH, et al. Uropathogens and their antimicrobial-resistant pattern among suspected urinary tract infections patients in eastern Nepal: a hospital inpatients-based study. SAGE Open Med. 2023; 11: 20503121231220821. [DOI:10.1177/20503121231220821] [PMID] [PMCID]
19. Gandra S, Alvarez-Uria G, Stwalley D, Nickel KB, Reske KA, Kwon JH. Microbiology clinical culture diagnostic yields and antimicrobial resistance proportions before and during the COVID-19 pandemic in an Indian community hospital and two US community hospitals. Antibiotics (Basel). 2023; 12 (3): 537. [DOI:10.3390/antibiotics12030537] [PMID] [PMCID]
20. Abdelmoneim SA, Ghazy RM, Sultan EA, Hassaan MA, Mahgoub MA. Antimicrobial resistance burden pre and post-COVID-19 pandemic with mapping the multidrug resistance in Egypt: a comparative cross-sectional study. Sci Rep. 2024; 14 (1): 7176. [DOI:10.1038/s41598-024-56254-4] [PMID] [PMCID]
21. Coronado PAF, Cano JMG, Chimeu VHS, Sandria LA, Flores JF. Comparative antibiotic resistance in urine cultures before and after the SARS-CoV-2 pandemic. Microbe. 2024; 4: 100134. [DOI:10.1016/j.microb.2024.100134]
22. Mareș C, Petca RC, Petca A, Popescu RI, Jinga V. Does the COVID pandemic modify the antibiotic resistance of uropathogens in female patients? A new storm? Antibiotics (Basel). 2022; 11 (3): 376. [DOI:10.3390/antibiotics11030376] [PMID] [PMCID]
23. Arif M, Tahir S, Nazeer K, Barakullah H, Sultan S, Riaz S. Drug-resistant trends of Acinetobacter spp. before and during the COVID-19 pandemic in Punjab, Pakistan. Pak BioMed J. 2024; 7: 3-8. [DOI:10.54393/pbmj.v7i6.1091]
24. Syed RF, Yelamanchili S, Thati S. A comparative study of Acinetobacter infections in COVID and non-COVID patients. J Infect Dis Epidemiol. 2022; 8: 250. [DOI:10.23937/2474-3658/1510250]
25. Xia J, Lu L, Zhao KL, Zeng QL. Resistance transition of Pseudomonas aeruginosa in SARS-CoV-2-uninfected hospitalized patients in the pandemic. Infect Drug Resist. 2023; 16: 6717-24. [DOI:10.2147/IDR.S423167] [PMID] [PMCID]
26. Zhao L, ZiquanLv, Lin L, Li X, Xu J, Huang S, et al. Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. Environ Pollut. 2023; 334: 122133. [DOI:10.1016/j.envpol.2023.122133] [PMID]
27. Krakhotkino DV, Chernylovskyi VA, Greco F, Halilov SM. Possible scenarios of the development of antibiotic resistance in patients with urinary tract infection after the COVID-19 pandemic era. Uro-Technol J. 2022; 6 (4): 8-12. [DOI:10.31491/UTJ.2022.12.003]
28. Golli AL, Zlatian OM, Cara ML, Olteanu M. Pre- and post-COVID-19 antimicrobial resistance pattern of pathogens in an intensive care unit. Pharmaceuticals (Basel). 2024; 17 (4): 407. [DOI:10.3390/ph17040407] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.