Volume 12, Issue 1 (3-2024)                   JoMMID 2024, 12(1): 1-21 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asghari-Paskiabi F, Jahanshiri Z. Nanotechnology-Based Strategies for Combating Emerging and Re-emerging Fungal Infections. JoMMID 2024; 12 (1) :1-21
URL: http://jommid.pasteur.ac.ir/article-1-671-en.html
Department of Mycology, Pasteur Institute of Iran, Tehran 13164, Iran
Abstract:   (354 Views)
The emergence and re-emergence of pathogenic fungi pose a significant challenge, fueled by factors like increased immunosuppression and climate changes. Despite the development of new antifungal drugs and therapies, controlling these infections remains a pressing issue. Candida auris, a multidrug-resistant yeast, has caused invasive infections with high mortality rates in hospitals worldwide, with Iran experiencing a particularly high burden of invasive C. auris infections. The identification of new at-risk groups, rising prevalence of resistant infections, and the emergence of novel multidrug-resistant pathogenic fungi highlight the need for novel therapeutic approaches and effective prevention strategies. This review explores the potential of nanotechnology, an emerging field, in combating emerging fungal infections, such as C. auris, and re-emerging infections caused by Fusarium and Rhizopus species. We conducted a literature review of studies exploring nanotechnology-based approaches to control or inhibit these emerging and re-emerging fungal pathogens with a particular focus on Iran and globally, where antimicrobial resistance is a growing concern. Nanotechnology revolutionizes antifungal strategies with novel solutions. Nanoparticles (NPs) and nanomaterials possess unique properties, such as enhanced solubility, targeted delivery, and ROS generation, which can disrupt fungal cell membranes, inhibit biofilm formation, and prevent sporulation. Their tailored sizes, high surface-to-volume ratios, and customizable surface chemistries make them game-changing solutions to combat drug-resistant fungal infections and improve treatment outcomes. Numerous studies have demonstrated the ability of various NPs, including silver, metal oxide, and carbon-based nanomaterials, to inhibit the growth and virulence factors of C. auris, Fusarium, and Rhizopus species. These nanomaterials exhibit potent antifungal activities through mechanisms such as disrupting cell membrane integrity, inducing oxidative stress, and inhibiting fungal metabolic pathways. 
Full-Text [PDF 869 kb]   (125 Downloads)    
Type of Study: Review article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2024/05/27 | Accepted: 2024/05/21 | Published: 2024/06/8

References
1. Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021; 17 (4): e1009503. [DOI:10.1371/journal.ppat.1009503] [PMID] []
2. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009; 53 (1): 41-4. [DOI:10.1111/j.1348-0421.2008.00083.x] [PMID]
3. Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, et al. On the origins of a species: what might explain the rise of Candida auris? J Fungus. 2019; 5 (3): 58. [DOI:10.3390/jof5030058] [PMID] []
4. Rhodes J, Fisher MC. Global epidemiology of emerging Candida auris. Curr Opin Microbiol. 2019; 52: 84-9. [DOI:10.1016/j.mib.2019.05.008] [PMID]
5. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. MBio. 2019; 10 (4): e01397-19. [DOI:10.1128/mBio.01397-19] [PMID] []
6. de Vallavieille‐Pope C, Bahri B, Leconte M, Zurfluh O, Belaid Y, Maghrebi E, et al. Thermal generalist behaviour of invasive Puccinia striiformis f. sp. tritici strains under current and future climate conditions. Plant Pathol. 2018; 67 (6): 1307-20. [DOI:10.1111/ppa.12840]
7. Lockhart SR, Guarner J, editors. Emerging and reemerging fungal infections. Semin Diagn Pathol. 2019; Elsevier. [DOI:10.1053/j.semdp.2019.04.010] [PMID]
8. Niederwieser D, Baldomero H, Szer J, Gratwohl M, Aljurf M, Atsuta Y, et al. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant. 2016; 51 (6): 778-85. [DOI:10.1038/bmt.2016.18] [PMID] []
9. Razzaghi-Abyaneh M, Sadeghi G, Zeinali E, Alirezaee M, Shams-Ghahfarokhi M, Amani A, et al. Species distribution and antifungal susceptibility of Candida spp. isolated from superficial candidiasis in outpatients in Iran. J Mycol Med. 2014; 24 (2): e43-e50. [DOI:10.1016/j.mycmed.2014.01.004] [PMID]
10. Afshari MA, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran. Iran J Microbiol. 2016; 8 (1): 36-46.
11. Robati AK, Mousavi SAA, Hadizadeh S. Epidemiology and microbiology of fungal diseases: A survey in South of Iran. Curr Med Mycol. 2016; 2 (4): 18-40.
12. Dabiri S, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. SAP (1-3) gene expression in high proteinase producer Candida species strains isolated from Iranian patients with different candidosis. Pure Appl Microbiol. 2016; 10 (3): 1891-6.
13. Sadeghi G, Ebrahimi-Rad M, Mousavi S, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Emergence of non-Candida albicans species: epidemiology, phylogeny and fluconazole susceptibility profile. J Mycol Med. 2018; 28 (1): 51-8. [DOI:10.1016/j.mycmed.2017.12.008] [PMID]
14. Salehi Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur J Clin Microbiol Infect Dis. 2018; 37 (10): 1841-6. [DOI:10.1007/s10096-018-3317-4] [PMID]
15. Sadeghi G, Ebrahimi-Rad M, Shams-Ghahfarokhi M, Jahanshiri Z, Ardakani EM, Eslamifar A, et al. Cutaneous candidiasis in Tehran-Iran: from epidemiology to multilocus sequence types, virulence factors and antifungal susceptibility of etiologic Candida species. Iran J Microbiol. 2019; 11 (4): 267-79. [DOI:10.18502/ijm.v11i4.1463] [PMID] []
16. Sadeghi G, Mousavi SF, Ebrahimi-Rad M, Mirabzadeh-Ardekani E, Eslamifar A, Shams-Ghahfarokhi M, et al. In vivo and in vitro pathogenesis and virulence factors of Candida albicans strains isolated from cutaneous candidiasis. Iran Biomed J. 2020; 24 (5): 324-32. [DOI:10.29252/ibj.24.5.319] [PMID] []
17. Jahanshiri Z, Manifar S, Hatami F, Arastehnazar F, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Genotyping of Candida albicans isolates from oropharyngeal candidiasis in head and neck cancer patients in Iran: Molecular epidemiology and SAP2 gene expression. J Mycol Med. 2019; 29 (4): 310-6. [DOI:10.1016/j.mycmed.2019.100896] [PMID]
18. Salehi Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Molecular epidemiology, genetic diversity, and antifungal susceptibility of major pathogenic dermatophytes isolated from human dermatophytosis. Front Microbiol. 2021; 12 (4): 643509. [DOI:10.3389/fmicb.2021.643509] [PMID] []
19. Pashootan N, Shams-Ghahfarokhi M, Chaichi Nusrati A, Salehi Z, Asmar M, Razzaghi-Abyaneh M. Phylogeny, antifungal susceptibility, and point mutations of SQLE gene in major pathogenic dermatophytes isolated from clinical dermatophytosis. Front Cell Infect Microbiol. 2022; 12 (18): 851769. [DOI:10.3389/fcimb.2022.851769] [PMID] []
20. Bradley SF. Candida auris infection. JAMA. 2019; 322 (15): 1526-31. [DOI:10.1001/jama.2019.13857] [PMID]
21. Sarma S, Upadhyay S. Current perspective on emergence, diagnosis and drug resistance in Candida auris. Infect Drug Resist. 2017; 10 (7): 155-65. [DOI:10.2147/IDR.S116229] [PMID] []
22. Aldossary HA, Rehman S, Jermy BR, AlJindan R, Aldayel A, AbdulAzeez S, et al. Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida Auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite. Pharmaceutics. 2022; 14 (10): 2251. [DOI:10.3390/pharmaceutics14102251] [PMID] []
23. Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D, Kruppa MD, et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol. 2020; 5 (12): 1516-1531. [DOI:10.1038/s41564-020-0780-3] [PMID] []
24. Abastabar M, Haghani I, Ahangarkani F, Rezai MS, Taghizadeh Armaki M, Roodgari S, et al. Candida auris otomycosis in Iran and review of recent literature. Mycoses. 2019; 62 (2): 101-5. [DOI:10.1111/myc.12886] [PMID]
25. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis. 2019; 25 (9): 1780-1. [DOI:10.3201/eid2509.190686] [PMID] []
26. Safari F, Madani M, Badali H, Kargoshaie A-A, Fakhim H, Kheirollahi M, et al. A chronic autochthonous fifth clade case of Candida auris otomycosis in Iran. Mycopathologia. 2022; 187 (1): 121-7. [DOI:10.1007/s11046-021-00605-6] [PMID]
27. Armaki MT, Omran SM, Kiakojuri K, Khojasteh S, Jafarzadeh J, Tavakoli M, et al. First fluconazole-resistant Candida auris isolated from fungal otitis in Iran. Curr Med Mycol. 2021; 7 (1): 51-4.
28. Mirhendi H, Charsizadeh A, Aboutalebian S, Mohammadpour M, Nikmanesh B, de Groot T, et al. South Asian (Clade I) Candida auris meningitis in a paediatric patient in Iran with a review of the literature. Mycoses. 2022; 65 (2): 134-9. [DOI:10.1111/myc.13396] [PMID]
29. Ruiz GB, Lorenz A. What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res. 2021; 242: 126621. [DOI:10.1016/j.micres.2020.126621] [PMID]
30. Sáenz V, Alvarez-Moreno C, Pape PL, Restrepo S, Guarro J, Ramírez AMC. A one health perspective to recognize Fusarium as important in clinical practice. J Fungus. 2020; 6 (4): 235. [DOI:10.3390/jof6040235] [PMID] []
31. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013; 67: 399-416. [DOI:10.1146/annurev-micro-092412-155650] [PMID]
32. Erami M, Aboutalebian S, Hezaveh SJH, Matini AH, Momen-Heravi M, Ahsaniarani AH, et al. Invasive Fusarium rhinosinusitis in COVID-19 patients: report of three cases with successful management. Front Cell Infect Microbiol. 2023; 13 (14): 1247491. [DOI:10.3389/fcimb.2023.1247491] [PMID] []
33. Gianni C, Cerri A, Crosti C. Unusual clinical features of fingernail infection by Fusarium oxysporum. Mycoses. 1997; 40 (11‐12): 455-9. [DOI:10.1111/j.1439-0507.1997.tb00184.x] [PMID]
34. Namboothiri PS, Nair SN, Vijayan K, Visweswaran V. Disseminated Fusarium oxysporum neurospinal infection. Indian J Orthop. 2014; 48 (2): 220-2. [DOI:10.4103/0019-5413.128773] [PMID] []
35. Kandeel A, Abu-Elmagd K, Spinner M, Khanna A, Hashimoto K, Fujiki M, et al. Atypical Clinical Presentation of a Newer Generation Anti-Fungal Drug-Resistant Fusarium Infection After a Modified Multi-Visceral Transplant. Ann Transplant. 2015; 20 (3): 512-8. [DOI:10.12659/AOT.892209] [PMID]
36. Rosanova MT, Brizuela M, Villasboas M, Guarracino F, Alvarez V, Santos P, et al. Fusarium spp infections in a pediatric burn unit: nine years of experience. Braz J Infect Dis. 2016; 20 (4): 389-92. [DOI:10.1016/j.bjid.2016.04.004] [PMID] []
37. Carlesse F, Amaral A-PC, Gonçalves SS, Xafranski H, Lee M-LM, Zecchin V, et al. Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia. Antimicrob Resist Infect Control. 2017; 6 (1): 93. [DOI:10.1186/s13756-017-0247-3] [PMID] []
38. Hasel K, Patel T. Fusarium vascular graft infection. IDCases. 2019; 15 (19): e00511. [DOI:10.1016/j.idcr.2019.e00511] [PMID] []
39. Medaglia AA, Marco-Hernández J, de Ossó Acuña JT, Hermida Lama E, Martínez-Rebollar M, Caballero M, et al. Fusarium keratoplasticum infection in an HIV-infected patient. Int J STD. 2018; 29 (10): 1039-42. [DOI:10.1177/0956462418761259] [PMID]
40. Nambiar P, Cober E, Johnson L, Brizendine K. Fatal Fusarium infection manifesting as osteomyelitis following previous treatment with amphotericin B in a multi‐visceral transplant: Case report and review of Fusarium infections in solid organ transplantation. Transpl Infect Dis. 2018; 20 (3): e12872. [DOI:10.1111/tid.12872] [PMID]
41. Basiri Djahromi S, Khaksar AA, Vaziri Kashani M, Arsid S. Disseminated Infection due to Fusarium sp. in a Patient with Chronic Granulomatous Disease. Med J Islam Repub Iran. 1998; 12 (1): 93-6.
42. Amirrajab N, Aliyali M, Mayahi S, Najafi N, Abdi R, Nourbakhsh O, et al. Co-infection of invasive pulmonary aspergillosis and cutaneous Fusarium infection in a patient with pyoderma gangrenosum. J Res Med Sci. 2015; 20 (2): 199-203.
43. Mousavi SA, Esfandiarpour I, Salari S, Shokri H. Onychomycosis due to Fusarium spp. in patient with squamous cell carcinoma: A case report from Kerman, Iran. J Mycol Med. 2009; 19 (2): 146-9. [DOI:10.1016/j.mycmed.2009.03.003]
44. Hashemi SJ, Ardehali MM, Rezaie S, Zibafar E, Shoar MG, Rezaei-Matehkolaei A, et al. A case of fungus ball-type pansinusitis due to Fusarium proliferatum. Mycopathologia. 2015; 180 (3): 251-5. [DOI:10.1007/s11046-015-9906-1] [PMID]
45. Rajabzadeh A, Shokri D, Aboutalebian S, Morovati H, Mohammadi A, Samani RE, et al. A Fatal Case of Bloodstream Infection by Fusarium Solani in a Patient with Adrenocortical Carcinoma From Isfahan, Iran. Int J Cancer Manag. 2020; 13 (2): e98610. [DOI:10.5812/ijcm.98610]
46. Nosratabadi M, Faeli L, Haghani I, Mohammadi R, Khodavaisy S, Kachuei R, et al. In vitro antifungal susceptibility profile of Iranian Fusarium isolates: Emphasising on the potent inhibitory effect of efinaconazole compared to other drugs. Mycoses. 2023; 66 (3): 258-75. [DOI:10.1111/myc.13550] [PMID]
47. Alavi Darazam I, Sharifi G, Jamali E, Khodavaisy S, Javandoust Gharehbagh F, Hakamifard A. Meningoencephalitis caused by Fusarium proliferatum: an unusual case. Infection. 2022; 50 (4): 1023-7. [DOI:10.1007/s15010-022-01761-7] [PMID]
48. Ghosh D, Dey S, Chakraborty H, Mukherjee S, Halder A, Sarkar A, et al. Mucormycosis: A new threat to Coronavirus disease 2019 with special emphasis on India. Clin Epidemiol Glob Health. 2022; 15: 101013. [DOI:10.1016/j.cegh.2022.101013] [PMID] []
49. Sugar AM. Mucormycosis. Clin Infect Dis. 1992; 14 (Supplement_1): S126-S9. [DOI:10.1093/clinids/14.Supplement_1.S126] [PMID]
50. Lanternier F, Dannaoui E, Morizot G, Elie C, Garcia-Hermoso D, Huerre M, et al. A global analysis of mucormycosis in France: the RetroZygo Study (2005-2007). Clin Infect Dis. 2012; 54 (suppl_1): S35-S43. [DOI:10.1093/cid/cir880] [PMID]
51. Kanwar A, Jordan A, Olewiler S, Wehberg K, Cortes M, Jackson BR. A fatal case of Rhizopus azygosporus pneumonia following COVID-19. J Fungi. 2021; 7 (3): 174. [DOI:10.3390/jof7030174] [PMID] []
52. Özbek L, Topçu U, Manay M, Esen BH, Bektas SN, Aydın S, et al. COVID-19-associated mucormycosis: A systematic review and meta-analysis of 958 cases. Clin Microbiol Infect. 2023; 29 (6): 722-31. [DOI:10.1016/j.cmi.2023.03.008] [PMID] []
53. Salehi M, Mahmoudi S, Rezahosseini O, Hashemi SJ, Ahmadikia K, Aala F, et al. The epidemiological, clinical, mycological, and pathological features of rhino-cerebral mucormycosis: a systematic review. Iran J Pathol. 2022; 17 (2): 112-21. [DOI:10.30699/ijp.2022.538690.2721] [PMID] []
54. McBride RA, Corson JM, Dammin GJ. Mucormycosis: two cases of disseminated disease with cultural identification of Rhizopus; review of literature. Am J Med. 1960; 28 (5): 832-46. [DOI:10.1016/0002-9343(60)90138-8]
55. Erami M, Mirhendi H, Momen-Heravi M, Sharif A, Hashemi Hezaveh SJ, Matini AH, et al. Case report: COVID-19-associated mucormycosis co-infection with Lomentospora prolificans: The first case and review on multiple fungal co-infections during COVID-19 pandemic. Front Med. 2023; 10 (16): 1078970. [DOI:10.3389/fmed.2023.1078970] [PMID] []
56. Schmiedel Y, Zimmerli S. Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med Wkly. 2016; 146: w14281. [DOI:10.4414/smw.2016.14281] [PMID]
57. Badiee P, Hashemizadeh Z. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res. 2014; 139 (2): 195-204.
58. Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Overcoming antifungal resistance. Drug Discov Today Technol. 2014; 11: 65-71. [DOI:10.1016/j.ddtec.2014.02.005] [PMID] []
59. Mohr J, Johnson M, Cooper T, Lewis JS, Ostrosky‐Zeichner L. Current options in antifungal pharmacotherapy. Pharmacotherapy. 2008; 28 (5): 614-45. [DOI:10.1592/phco.28.5.614] [PMID]
60. Arendrup M. Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect. 2014; 20 (6): 42-8. [DOI:10.1111/1469-0691.12513] [PMID]
61. Shahid SK. Newer patents in antimycotic therapy. Pharm Pat Anal. 2016; 5 (2): 115-34. [DOI:10.4155/ppa-2015-0001] [PMID]
62. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012; 17 (12): 383-92. [DOI:10.1155/2012/713687] [PMID] []
63. Niemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nanomaterials. Nanomedicine. 2017; 12 (15): 1891-1905. [DOI:10.2217/nnm-2017-0052] [PMID]
64. Seyedjavadi SS, Khani S, Amani J, Halabian R, Goudarzi M, Hosseini HM, et al. Design, Dimerization, and Recombinant Production of MCh-AMP1-Derived Peptide in Escherichia coli and Evaluation of Its Antifungal Activity and Cytotoxicity. Front Fungal Biol. 2021; 2: 638595. [DOI:10.3389/ffunb.2021.638595] [PMID] []
65. Asghari-Paskiabi F, Jahanshiri Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal nanotherapy: a novel approach to combat superficial fungal infections. In: Rai M, editor. Nanotechnology in Skin, Soft Tissue, and Bone Infections. Cham: Springer; 2020. p. 93-107. [DOI:10.1007/978-3-030-35147-2_5]
66. Mohammadi G, Shakeri A, Fattahi A, Mohammadi P, Mikaeili A, Aliabadi A, et al. Preparation, physicochemical characterization and anti-fungal evaluation of nystatin-loaded PLGA-glucosamine nanoparticles. Pharm Res. 2017; 34 (2): 301-9. [DOI:10.1007/s11095-016-2062-6] [PMID]
67. Kumar S, Kaur P, Bernela M, Rani R, Thakur R. Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int J Biol Macromol. 2016; 93 (Pt A): 988-94. [DOI:10.1016/j.ijbiomac.2016.09.042] [PMID]
68. Sun L, Liao K, Li Y, Zhao L, Liang S, Guo D, et al. Synergy between polyvinylpyrrolidone-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol. 2016; 16 (3): 2325-35. [DOI:10.1166/jnn.2016.10934] [PMID]
69. Huang X, Tang S, Liu B, Ren B, Zheng N. Enhancing the photothermal stability of plasmonic metal Nanoplates by a core‐shell architecture. Adv Mater. 2011; 23 (30): 3420-5. [DOI:10.1002/adma.201100905] [PMID]
70. Zhang C, Chen M, Wang G, Fang W, Ye C, Hu H, et al. Pd@ Ag nanosheets in combination with Amphotericin B exert a potent anti-cryptococcal fungicidal effect. PLoS One. 2016; 11 (6): e0157000. [DOI:10.1371/journal.pone.0157000] [PMID] []
71. Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, et al. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses. 2013; 56 (6): 672-80. [DOI:10.1111/myc.12093] [PMID]
72. Sharma N, Jandaik S, Kumar S. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. An Acad Bras Cienc. 2016; 88 (3 Suppl): 1689-98. [DOI:10.1590/0001-3765201620150713] [PMID]
73. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano. 2009; 3 (2): 279-90. [DOI:10.1021/nn800596w] [PMID]
74. Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother. 1998; 42 (10): 2645-9. [DOI:10.1128/AAC.42.10.2645] [PMID] []
75. Krcmery V, Barnes A. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002; 50 (4): 243-60. [DOI:10.1053/jhin.2001.1151] [PMID]
76. Pahuja P, Kashyap H, Pawar P. Design and evaluation of HP-β-CD based voriconazole formulations for ocular drug delivery. Curr Drug Deliv. 2014; 11 (2): 223-232. [DOI:10.2174/1567201810666131224105205] [PMID]
77. Pawar P, Kashyap H, Malhotra S, Sindhu R. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. Biomed Res Int. 2013; 2013: 341218. [DOI:10.1155/2013/341218] [PMID] []
78. Sun X, Yu Z, Cai Z, Yu L, Lv Y. Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PloS one. 2016; 11 (12): e0167961. [DOI:10.1371/journal.pone.0167961] [PMID] []
79. de Sá FAP, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B. 2015; 133 (1): 331-8. [DOI:10.1016/j.colsurfb.2015.06.036] [PMID]
80. Kumar R, Sinha V. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf B Biointerfaces. 2014; 117 (1): 82-8. [DOI:10.1016/j.colsurfb.2014.02.007] [PMID]
81. Shukr MH. Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics. J Microencapsul. 2016; 33 (1): 71-9. [DOI:10.3109/02652048.2015.1128489] [PMID]
82. Füredi P, Pápay ZE, Kovács K, Kiss BD, Ludányi K, Antal I, et al. Development and characterization of the voriconazole loaded lipid-based nanoparticles. J Pharm Biomed Anal. 2017; 132 (5): 184-9. [DOI:10.1016/j.jpba.2016.09.047] [PMID]
83. Flores FC, Rosso RS, Cruz L, Beck RC, Silva CB. An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment. Eur J Pharm Sci. 2017; 100 (30): 56-63. [DOI:10.1016/j.ejps.2016.12.043] [PMID]
84. Hatami F, Manifar S, Asghari-Paskiabi F, Amiri FB, Nojoumi SA, Jahanshiri Z. Molecular mechanisms of azole resistance in Candida glabrata isolated from oropharyngeal candidiasis in head and neck cancer patients. Arch Oral Biol. 2023; 154: 105757. [DOI:10.1016/j.archoralbio.2023.105757] [PMID]
85. Jahanshiri Z, Manifar S, Moosa H, Asghari-Paskiabi F, Mahmoodzadeh H, Shams-Ghahfarokhi M, et al. Oropharyngeal candidiasis in head and neck cancer patients in Iran: Species identification, antifungal susceptibility and pathogenic characterization. J Mycol Med. 2018; 28 (2): 361-6. [DOI:10.1016/j.mycmed.2018.01.001] [PMID]
86. Lara HH, Ixtepan-Turrent L, Jose Yacaman M, Lopez-Ribot J. Inhibition of Candida auris biofilm formation on medical and environmental surfaces by silver nanoparticles. ACS Appl Mater Interfaces. 2020; 12 (19): 21183-91. [DOI:10.1021/acsami.9b20708] [PMID] []
87. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020; 10 (2): 292. [DOI:10.3390/nano10020292] [PMID] []
88. Asghari F, Jahanshiri Z, Imani M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal nanomaterials: synthesis, properties, and applications. In: Grumezescu AM, editor. Nanobiomaterials in antimicrobial therapy: Amsterdam: Elsevier; 2016. p. 343-383. [DOI:10.1016/B978-0-323-42864-4.00010-5]
89. Asghari-Paskiabi F, Imani M, Razzaghi-Abyaneh M, Rafii-Tabar H. Fusarium oxysporum, a bio-factory for nano selenium compounds: synthesis and characterization. Sci Iran. 2018; 25 (3): 1857-63. [DOI:10.24200/sci.2018.5301.1192]
90. Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Nojoumi SA, Razzaghi-Abyaneh M. Shortening the sulfur cell cycle by a green approach for bio-production of extracellular metalloid-sulfide nanoparticles. Sci Rep. 2023; 13 (1): 4723. [DOI:10.1038/s41598-023-31802-6] [PMID] []
91. Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2019; 516 (4): 1078-84. [DOI:10.1016/j.bbrc.2019.07.007] [PMID]
92. Asghari-Paskiabi F, Imani M, Eybpoosh S, Rafii-Tabar H, Razzaghi-Abyaneh M. Population kinetics and mechanistic aspects of Saccharomyces cerevisiae growth in relation to selenium sulfide nanoparticle synthesis. Front Microbiol. 2020; 11: 1019. [DOI:10.3389/fmicb.2020.01019] [PMID] []
93. Asghari-Paskiabi F, Razzaghi-Abyaneh M. (2023). Yeast as a cell factory. In M. R. Golińska (Ed.), Mycosynthesis of Nanomaterials: Perspectives and Challenges (pp. 27-49). CRC Press. [DOI:10.1201/9781003327387-3]
94. Kim K-J, Sung WS, Suh BK, Moon S-K, Choi J-S, Kim JG, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009; 22 (2): 235-42. [DOI:10.1007/s10534-008-9159-2] [PMID]
95. Dananjaya S, Erandani W, Kim C-H, Nikapitiya C, Lee J, De Zoysa M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol. 2017; 105 (Pt 1): 478-88. [DOI:10.1016/j.ijbiomac.2017.07.056] [PMID]
96. Sardella D, Gatt R, Valdramidis VP. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res Int. 2017; 101: 274-79. [DOI:10.1016/j.foodres.2017.08.019] [PMID]
97. Kumari M, Giri VP, Pandey S, Kumar M, Katiyar R, Nautiyal CS, et al. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem Physiol. 2019; 157: 45-52. [DOI:10.1016/j.pestbp.2019.03.005] [PMID]
98. Lengert EV, Talnikova EE, Tuchin VV, Svenskaya YI. Prospective Nanotechnology-Based Strategies for Enhanced Intra-and Transdermal Delivery of Antifungal Drugs. Skin Pharmacol. Physiol. 2020; 33 (5): 261-9. [DOI:10.1159/000511038] [PMID]
99. Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, et al. The Candida albicans biofilm matrix: composition, structure and function. J Fungi. 2017; 3 (1): 14. [DOI:10.3390/jof3010014] [PMID] []
100. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol. 2017; 55 (10): 2996-3005. [DOI:10.1128/JCM.00921-17] [PMID] []
101. Ku TS, Walraven CJ, Lee SA. Candida auris: disinfectants and implications for infection control. Front Microbiol. 2018; 9: 726. [DOI:10.3389/fmicb.2018.00726] [PMID] []
102. Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Bismuth nanoantibiotics display anticandidal activity and disrupt the biofilm and cell morphology of the emergent pathogenic yeast Candida auris. Antibiotics. 2020; 9 (8): 461. [DOI:10.3390/antibiotics9080461] [PMID] []
103. Gangadoo S, Elbourne A, Medvedev AE, Cozzolino D, Truong YB, Crawford RJ, et al. Facile route of fabricating long-term microbicidal silver nanoparticle clusters against shiga toxin-producing Escherichia coli O157: H7 and Candida auris. Coatings. 2020; 10 (1): 28. [DOI:10.3390/coatings10010028]
104. Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Silver nanoantibiotics display strong antifungal activity against the emergent multidrug-resistant yeast Candida auris under both planktonic and biofilm growing conditions. Front Microbiol. 2020; 11: 1673. [DOI:10.3389/fmicb.2020.01673] [PMID] []
105. Kamli MR, Srivastava V, Hajrah NH, Sabir JS, Hakeem KR, Ahmad A, et al. Facile bio-fabrication of Ag-Cu-Co trimetallic nanoparticles and its fungicidal activity against Candida auris. J Fungi. 2021; 7 (1): 62. [DOI:10.3390/jof7010062] [PMID] []
106. Kamli MR, Srivastava V, Hajrah NH, Sabir JS, Ali A, Malik MA, et al. Phytogenic fabrication of Ag-Fe Bimetallic nanoparticles for cell cycle arrest and apoptosis signaling pathways in Candida auris by generating oxidative stress. Antioxidants. 2021; 10 (2): 182. [DOI:10.3390/antiox10020182] [PMID] []
107. Hetta HF, Ramadan YN, Al-Kadmy IM, Ellah NHA, Shbibe L, Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens. 2023; 12 (8): 1033. [DOI:10.3390/pathogens12081033] [PMID] []
108. Kasprowicz MJ, Kozioł M, Gorczyca A. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol. 2010; 56 (3): 247-53. [DOI:10.1139/W10-012] [PMID]
109. Wang X, Liu X, Chen J, Han H, Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014; 68: 798-806. [DOI:10.1016/j.carbon.2013.11.072]
110. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett. 2016; 14: 229-35. [DOI:10.1007/s10311-015-0543-1]
111. Viet PV, Nguyen HT, Cao TM, Hieu LV. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater. 2016; 2016: 1-8. [DOI:10.1155/2016/1957612]
112. Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A. Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int J Biol Macromol. 2019; 133: 603-13. [DOI:10.1016/j.ijbiomac.2019.04.071] [PMID]
113. Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-assisted green synthesis and characterization of silver nanoparticles using Melia azedarach for the management of Fusarium wilt in tomato. Front Microbiol. 2020; 11: 238. [DOI:10.3389/fmicb.2020.00238] [PMID] []
114. El-Abeid SE, Ahmed Y, Daròs J-A, Mohamed MA. Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against Fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials. 2020; 10 (5): 1001. [DOI:10.3390/nano10051001] [PMID] []
115. Mosa MA, El-Abeid SE, Khalifa M, Elsharouny T, El-Baz SM, Ahmed AY. Smart pH responsive system based on hybrid mesoporous silica nanoparticles for delivery of fungicide to control Fusarium crown and root rot in tomato. Plant Pathol J. 2022; 104 (3): 979-92. [DOI:10.1007/s42161-022-01122-1]
116. Wani A, Shah M. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci. 2012; 2 (3): 40-4.
117. Medda S, Hajra A, Dey U, Bose P, Mondal NK. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci. 2015; 5: 875-80. [DOI:10.1007/s13204-014-0387-1]
118. Yousef N, Niloufar M, Elena P. Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits. Foods Raw Mater. 2019; 7 (1): 210-6. [DOI:10.21603/2308-4057-2019-1-210-216]
119. Nafady NA, Alamri SA, Hassan EA, Hashem M, Mostafa YS, Abo-Elyousr KA. Application of ZnO-nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life. Folia Hortic. 2019; 31 (2): 319-29. [DOI:10.2478/fhort-2019-0025]
120. Sahayaraj K, Balasubramanyam G, Chavali M. Green synthesis of silver nanoparticles using dry leaf aqueous extract of Pongamia glabra Vent (Fab.), Characterization and phytofungicidal activity. Environ Nanotechnol Monit Manag. 2020; 14: 100349. [DOI:10.1016/j.enmm.2020.100349]
121. Pang L-J, Adeel M, Shakoor N, Guo K-R, Ma D-F, Ahmad MA, et al. Engineered nanomaterials suppress the soft rot disease (Rhizopus stolonifer) and slow down the loss of nutrient in sweet potato. Nanomaterials. 2021; 11 (10): 2572. [DOI:10.3390/nano11102572] [PMID] []
122. Moreno-Vargas J, Echeverry-Cardona L, Moreno-Montoya L, Restrepo-Parra E. Evaluation of Antifungal Activity of Ag Nanoparticles Synthetized by Green Chemistry against Fusarium solani and Rhizopus stolonifera. Nanomaterials. 2023; 13 (3): 548. [DOI:10.3390/nano13030548] [PMID] []
123. Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano EM, Ortiz T, Villamor E, et al. Environmental impact of nanoparticles' application as an emerging technology: A review. Materials. 2020; 14 (1): 166. [DOI:10.3390/ma14010166] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.