Volume 12, Issue 3 (9-2024)                   JoMMID 2024, 12(3): 190-200 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fathi M. Immunoinformatics Approach to Designing a Subunit Vaccine Construct of Pseudomonas aeruginosa Outer Membrane Epitopes. JoMMID 2024; 12 (3) :190-200
URL: http://jommid.pasteur.ac.ir/article-1-661-en.html
Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Abstract:   (118 Views)
Introduction: Antibiotic-resistant Pseudomonas aeruginosa has been designated by the World Health Organization (WHO) as a critical priority pathogen, highlighting the critical need for developing new strategies, particularly prophylactic measures. This research focuses on incorporating highly antigenic elements from essential, surface-exposed outer membrane proteins of P. aeruginosa to design a polypeptide-based subunit vaccine capable of inducing a strong immune response, using immunoinformatics approaches. Methods: Ten essential outer membrane proteins of P. aeruginosa were analyzed using three online servers (ABCpred, BCPREDS, and LBtope) to predict B-cell epitopes and the IEDB server to predict CD8+ and CD4+ T-cell epitopes. The predicted epitopes were then assessed for physicochemical properties, allergenicity, and toxicity using relevant web servers. A vaccine construct incorporating the selected epitopes and an adjuvant was designed, and its 3D structure was modeled to study its interaction with Toll-like receptor-4 (TLR-4). Results: The final vaccine construct consisted of a 478-amino acid polypeptide incorporating 5 CD8+ T-cell, 5 CD4+ T-cell, and 15 B-cell epitopes. In silico analysis predicted the vaccine construct to be immunogenic, non-toxic, non-allergenic, and possess favorable physicochemical properties. Molecular docking simulations predicted strong binding affinity between the vaccine construct and TLR-4, suggesting its potential to elicit a robust immune response. Conclusion: These in silico analyses suggest that the designed subunit vaccine is potentially safe and effective against P. aeruginosa. However, experimental validation is necessary to confirm these predictions.
 
Full-Text [PDF 1069 kb]   (57 Downloads)    
Type of Study: Original article | Subject: Immune responses, deficiencies and vaccine candidates
Received: 2024/04/12 | Accepted: 2024/09/11 | Published: 2024/12/22

References
1. Howlader DR, Das S, Lu T, Mandal RS, Hu G, Varisco DJ, et al. A protein subunit vaccine elicits a balanced immune response that protects against Pseudomonas pulmonary infection. NPJ Vaccines. 2023; 8 (1): 37. [DOI:10.1038/s41541-023-00618-w] [PMID] [PMCID]
2. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022; 7 (1): 199. [DOI:10.1038/s41392-022-01056-1] [PMID] [PMCID]
3. Daikos GL, da Cunha CA, Rossolini GM, Stone GG, Baillon-Plot N, Tawadrous M, et al. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics (Basel). 2021; 10 (9): 1126. [DOI:10.3390/antibiotics10091126] [PMID] [PMCID]
4. Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti-Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms. 2023; 11 (4): 916. [DOI:10.3390/microorganisms11040916] [PMID] [PMCID]
5. Telling K, Laht M, Brauer A, Remm M, Kisand V, Maimets M, et al. Multidrug resistant Pseudomonas aeruginosa in Estonian hospitals. BMC Infect Dis. 2018; 18 (1): 513. [DOI:10.1186/s12879-018-3421-1] [PMID] [PMCID]
6. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023; 12 (1): 199. [DOI:10.3390/cells12010199] [PMID] [PMCID]
7. Al Rahbi F, Al Salmi I, Khamis F, Al Balushi Z, Pandak N, Petersen E, et al. Physicians' attitudes, knowledge, and practices regarding antibiotic prescriptions. J Glob Antimicrob Resist. 2023; 32: 58-65. [DOI:10.1016/j.jgar.2022.12.005] [PMID]
8. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019; 32 (4): e00031-19. [DOI:10.1128/CMR.00031-19] [PMID] [PMCID]
9. Akiola Sanya DR, Onésime D, Vizzarro G, Jacquier N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol. 2023; 23: 86. [DOI:10.1186/s12866-023-02832-x] [PMID] [PMCID]
10. Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines (Basel). 2022; 10 (7): 1100 [DOI:10.3390/vaccines10071100] [PMID] [PMCID]
11. Papaneri AB, Johnson RF, Wada J, Bollinger L, Jahrling PB, Kuhn JH. Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Rev Vaccines. 2015; 14 (7): 949-62. [DOI:10.1586/14760584.2015.1036033] [PMID] [PMCID]
12. Gouda AM, Soltan MA, Abd-Elghany K, Sileem AE, Elnahas HM, Ateya MA, et al. Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Front Mol Biosci. 2023; 10: 1123411. [DOI:10.3389/fmolb.2023.1123411] [PMID] [PMCID]
13. Wang X, Liu C, Rcheulishvili N, Papukashvili D, Xie F, Zhao J, et al. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines. 2023; 8 (1): 76. [DOI:10.1038/s41541-023-00672-4] [PMID] [PMCID]
14. Dey J, Mahapatra SR, Singh PK, Prabhuswamimath SC, Misra N, Suar M. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol Res. 2023; 71 (4): 639-62. [DOI:10.1007/s12026-023-09374-4] [PMID] [PMCID]
15. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009; 326 (5955): 986-91. [DOI:10.1126/science.1172702] [PMID] [PMCID]
16. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8: 4. [DOI:10.1186/1471-2105-8-4] [PMID] [PMCID]
17. Dimitrov I, Naneva L, Doytchinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014; 30 (6): 846-51. [DOI:10.1093/bioinformatics/btt619] [PMID]
18. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013; 8 (9): e73957. [DOI:10.1371/journal.pone.0073957] [PMID] [PMCID]
19. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model. 2014; 20 (6): 2278. [DOI:10.1007/s00894-014-2278-5] [PMID]
20. Dimitrov I, Flower DR, Doytchinova I. AllerTOP - a server for in silico prediction of allergens. BMC Bioinformatics. 2013; 14 (Suppl 6): S4. [DOI:10.1186/1471-2105-14-S6-S4] [PMID] [PMCID]
21. Ma Y, Liu Y, Cheng J. Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method. Sci Rep. 2018; 8 (1): 9856. [DOI:10.1038/s41598-018-28084-8] [PMID] [PMCID]
22. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017; 12 (2): 255-78. [DOI:10.1038/nprot.2016.169] [PMID] [PMCID]
23. Molteni M, Gemma S, Rossetti C. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation. Mediators Inflamm. 2016; 2016: 6978936. [DOI:10.1155/2016/6978936] [PMID] [PMCID]
24. Hanafiah A, Abd Aziz SNA, Md Nesran ZN, Chee Wezen X, Ahmad MF. Molecular investigation of antimicrobial peptides against Helicobacter pylori proteins using a peptide-protein docking approach. Heliyon. 2024; 10 (6): e28128. [DOI:10.1016/j.heliyon.2024.e28128] [PMID] [PMCID]
25. Matić Z, Šantak M. Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol. 2022; 106 (1): 25-56. [DOI:10.1007/s00253-021-11713-0] [PMID] [PMCID]
26. Dey J, Mahapatra SR, Patnaik S, Lata S, Kushwaha GS, Panda RK, et al. Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int J Pept Res Ther. 2022; 28 (2): 49. [DOI:10.1007/s10989-021-10356-z] [PMID] [PMCID]
27. Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines. 2020; 19 (8): 699-726. [DOI:10.1080/14760584.2020.1794832] [PMID]
28. Anand D, Chaudhuri A. Bacterial outer membrane vesicles: New insights and applications. Mol Membr Biol. 2016; 33 (6-8): 125-37. [DOI:10.1080/09687688.2017.1400602] [PMID]
29. Nemati Zargaran F, Akya A, Ghadiri K, Ranjbarian P, Rostamian M. Detecting the Dominant T and B Epitopes of Klebsiella pneumoniae Ferric Enterobactin Protein (FepA) and Introducing a Single Epitopic Peptide as Vaccine Candidate. Int J Pept Res Ther. 2021; 27 (4): 2209-21. [DOI:10.1007/s10989-021-10247-3] [PMID] [PMCID]
30. Irum S, Andleeb S, Ali A, Rashid MI, Majid M. Quest for Novel Preventive and Therapeutic Options Against Multidrug-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther. 2021; 27 (4): 2313-31. [DOI:10.1007/s10989-021-10255-3] [PMID] [PMCID]
31. Knapp B, Hundt E, Lenz U, Hungerer KD, Gabelsberger J, Domdey H, et al. A recombinant hybrid outer membrane protein for vaccination against Pseudomonas aeruginosa. Vaccine. 1999; 17 (13-14): 1663-6. [DOI:10.1016/S0264-410X(98)00420-4] [PMID]
32. Mansouri E, Blome-Eberwein S, Gabelsberger J, Germann G, von Specht BU. Clinical study to assess the immunogenicity and safety of a recombinant Pseudomonas aeruginosa OprF-OprI vaccine in burn patients. FEMS Immunol Med Microbiol. 2003; 37 (2-3): 161-6. [DOI:10.1016/S0928-8244(03)00072-5] [PMID]
33. Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur J Pharm Sci. 2012; 45 (4): 482-91. [DOI:10.1016/j.ejps.2011.08.016] [PMID]
34. Oyarzun P, Kashyap M, Fica V, Salas-Burgos A, Gonzalez-Galarza FF, McCabe A, et al. A Proteome-Wide Immunoinformatics Tool to Accelerate T-Cell Epitope Discovery and Vaccine Design in the Context of Emerging Infectious Diseases: An Ethnicity-Oriented Approach. Front Immunol. 2021; 12: 598778. [DOI:10.3389/fimmu.2021.598778] [PMID] [PMCID]
35. Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discov Today. 2020; 25 (6): 1034-42. [DOI:10.1016/j.drudis.2020.03.006] [PMID]
36. Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes. 2022; 10 (4): 39. [DOI:10.3390/proteomes10040039] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.