Volume 12, Issue 3 (9-2024)                   JoMMID 2024, 12(3): 224-234 | Back to browse issues page

Ethics code: IR.ARAKU.REC.1401.113


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abulmahdi Zaghir S, Komijani M, Sumoom Al-Fartusie F, Sargolzaei J. The role of Cytomegalovirus Infection in Diabetic Acromegaly Patients. JoMMID 2024; 12 (3) :224-234
URL: http://jommid.pasteur.ac.ir/article-1-647-en.html
Department of Biology, Faculty of Science, Arak University, Arak, Islamic Republic of Iran
Abstract:   (119 Views)
Introduction: Acromegaly is often associated with alterations in carbohydrate metabolism, ranging from impaired glucose tolerance to overt diabetes mellitus (DM). This study aimed to evaluate the serum concentrations of TNF-α and IL-10, along with other biochemical parameters, in patients with acromegaly and concomitant diabetes. Furthermore, we sought to investigate the associations between these parameters. Additionally, this study investigated the prevalence of Cytomegalovirus (CMV) infection and its potential correlation with TNF-α, IL-10, and other biochemical parameters in this patient population. Methods: Serum concentrations of TNF-α and IL-10 were measured in 50 patients with acromegaly and concomitant diabetes and 50 healthy controls using commercially available ELISA kits. CMV DNA was detected in serum samples using a qualitative PCR assay targeting the CMV late antigen gp64 gene. Results: Patients with acromegaly and concomitant diabetes exhibited significantly higher levels of IGF-1, insulin, HOMA-IR, cholesterol, triglycerides, LDL, VLDL, ALT, AST, bone-specific alkaline phosphatase (BALP), TNF-α, and IL-10 compared to the control group (all P<0.05). CMV infection was detected in 1.9% (1/50) of the healthy control group and 23.5% (12/50) of the acromegaly and diabetes group. Within the acromegaly and diabetes group, CMV-positive patients had significantly higher levels of TNF-α and IL-10 compared to CMV-negative patients (both P<0.05). Conclusion: This study demonstrated a significant association between elevated levels of TNF-α and IL-10 and acromegaly with concomitant diabetes. Further research is needed to determine if these cytokines play a causal role in the pathogenesis of these comorbidities. The observed increase in ALT, AST, and BALP levels in patients suggests potential liver and bone involvement in acromegaly with concomitant diabetes. Moreover, a higher prevalence of CMV infection was observed in patients with acromegaly and concomitant diabetes compared to healthy controls, suggesting a potential link between CMV infection and this patient population. Further research is warranted to elucidate the nature of this association and its potential clinical implications.
Full-Text [PDF 1294 kb]   (71 Downloads)    
Type of Study: Original article | Subject: Infectious diseases and public health
Received: 2024/01/28 | Accepted: 2024/09/11 | Published: 2024/12/22

References
1. Danilowicz K, and Sosa S. Acromegaly and Cancer: An Update. Arch Med Res. 2023; 54 (8): 102914. [DOI:10.1016/j.arcmed.2023.102914] [PMID]
2. Balinisteanu I, Caba L, Florea A, Popescu R, Florea L, Ungureanu MC, Leustean L, Gorduza EV, Preda C. Unlocking the Genetic Secrets of Acromegaly: Exploring the Role of Genetics in a Rare Disorder. Curr Issues Mol Biol. 2024, 46(8), 9093-9121. [DOI:10.3390/cimb46080538] [PMID] [PMCID]
3. Livingstone C. Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin Sci. 2013; 125 (6): 265-80. [DOI:10.1042/CS20120663] [PMID]
4. Frara S, Maffezzoni F, Mazziotti G, Giustina A. The modern criteria for medical management of acromegaly. Prog Mol Biol Transl Sci. 2016; 138: 63-83. [DOI:10.1016/bs.pmbts.2015.10.015] [PMID]
5. Clemmons DR. Roles of insulin-like growth factor-I and growth hormone in mediating insulin resistance in acromegaly. Pituitary. 2002; 5 (3): 181-3. [DOI:10.1023/A:1023321421760] [PMID]
6. Zenobi PD, Glatz Y, Keller A, Graf S, Jaeggi-Groisman SE, Riesen WF, et al. Beneficial metabolic effects of insulin-like growth factor I in patients with severe insulin-resistant diabetes type A. Eur J Endocrinol. 1994; 131 (3): 251-7. [DOI:10.1530/eje.0.1310251] [PMID]
7. Laager R, Ninnis R, Keller U. Comparison of the effects of recombinant human insulin-like growth factor-I and insulin on glucose and leucine kinetics in humans. J Clin Invest. 1993; 92 (4): 1903-9. [DOI:10.1172/JCI116783] [PMID] [PMCID]
8. del Rincon J-P, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, Barbour LA, et al. Growth Hormone Regulation of p85α Expression and Phosphoinositide 3-Kinase Activity in Adipose Tissue: Mechanism for Growth Hormone-Mediated Insulin Resistance. Diabetes. 2007; 56 (6): 1638-46. [DOI:10.2337/db06-0299] [PMID]
9. Kasayama S, Otsuki M, Takagi M, Saito H, Sumitani S, Kouhara H, et al. Impaired β‐cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol. 2000; 52 (5): 549-55. [DOI:10.1046/j.1365-2265.2000.00986.x] [PMID]
10. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020; 21 (17): 6275. [DOI:10.3390/ijms21176275] [PMID] [PMCID]
11. Ciresi A, Amato M, Pivonello R, Nazzari E, Grasso L, Minuto F, et al. The metabolic profile in active acromegaly is gender-specific. J Clin Endocrinol Metab. 2013; 98 (1): E51-E9. [DOI:10.1210/jc.2012-2896] [PMID]
12. Hasan HM, Salloom DF. Human. Cytomegalovirus Infection as a Risk Factor for Type 2 Diabetes Mellitus Development in a Sample of Iraqi Patients. Med Legal Update. 2021; 21 (2): 639-44. [DOI:10.37506/mlu.v21i2.2754]
13. Banerjee M, Saxena M. Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus. World J Diabetes. 2014; 5 (4): 493-504. [DOI:10.4239/wjd.v5.i4.493] [PMID] [PMCID]
14. Pincelli A, Brunani A, Scacchi M, Dubini A, Borsotti R, Tibaldi A, et al. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone-or obesity-induced insulin resistance. Horm Res. 2001; 55 (2): 57-64. [DOI:10.1159/000049971] [PMID]
15. Hong E-G, Ko HJ, Cho Y-R, Kim H-J, Ma Z, Yu TY, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009; 58 (11): 2525-35. [DOI:10.2337/db08-1261] [PMID] [PMCID]
16. Banaszak B, Świętochowska E, Banaszak P, Ziora K. Endothelin-1 (ET-1), N-terminal fragment of pro-atrial natriuretic peptide (NTpro-ANP), and tumour necrosis factor alpha (TNF-α) in children with primary hypertension and hypertension of renal origin. Endokrynol Pol. 2019; 70 (1): 37-42. [DOI:10.5603/EP.a2018.0079] [PMID]
17. Shah K, Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med. 2016; 77 (7): C98-C101. [DOI:10.12968/hmed.2016.77.7.C98] [PMID]
18. Wardana ZS, Sari GM, Tinduh D. The Relation Between IGF-1 Levels and Fasting Blood Glucose in Obese Women. STRADA SJIK. 2020; 9 (1): 140-6. [DOI:10.30994/sjik.v9i1.276]
19. Frystyk J, Freda P, Clemmons DR. The current status of IGF-I assays-a 2009 update. Growth Horm IGF Res. 2010; 20 (1): 8-18. [DOI:10.1016/j.ghir.2009.09.004] [PMID] [PMCID]
20. Salgado ALFdA, Carvalho Ld, Oliveira AC, Santos VNd, Vieira JG, Parise ER. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol. 2010; 47 (2): 165-9. [DOI:10.1590/S0004-28032010000200009] [PMID]
21. Bergmeyer H, Herder M, Ref R. International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J Clin Chem Clin Biochem. 1986; 24 (7): 497-510.
22. Sukkriang N, Chanprasertpinyo W, Wattanapisit A, Punsawad C, Thamrongrat N, Sangpoom S. Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine. Heliyon. 2021; 7 (2): e06264. [DOI:10.1016/j.heliyon.2021.e06264] [PMID] [PMCID]
23. Schaade L, Kockelkorn P, Ritter K, Kleines M. Detection of cytomegalovirus DNA in human specimens by LightCycler PCR. J Clin Microbiol. 2000; 38 (11): 4006-9. [DOI:10.1128/JCM.38.11.4006-4009.2000] [PMID] [PMCID]
24. Vila G, Jørgensen JOL, Luger A, Stalla GK. Insulin resistance in patients with acromegaly. Front Endocrinol. 2019; 10: 509. [DOI:10.3389/fendo.2019.00509] [PMID] [PMCID]
25. Hansen I, Tsalikian E, Beaufrere B, Gerich J, Haymond M, Rizza R. Insulin resistance in acromegaly: defects in both hepatic and extrahepatic insulin action. Am J Physiol. 1986; 250 (3): E269-E73. [DOI:10.1152/ajpendo.1986.250.3.E269] [PMID]
26. Al-Shawk RS. Evaluation of some pro-inflammatory and anti-inflammatory factors in patients with acromegaly. Mustansiriya Med J. 2017; 16 (3): 71-6. [DOI:10.4103/2070-1128.249496]
27. Wolters TL, Netea MG, Riksen NP, Hermus AR, Netea-Maier RT. Acromegaly, inflammation and cardiovascular disease: a review. Rev Endocr Metab Disord. 2020; 21 (4): 547-68. [DOI:10.1007/s11154-020-09560-x] [PMID] [PMCID]
28. Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, et al. Insulin resistance is associated with chronic hepatitis C and virus infection fibrosis progression. Gastroenterology. 2003; 125 (6): 1695-704. [DOI:10.1053/j.gastro.2003.08.032] [PMID]
29. Nelson DR, Lim HL, Marousis CG, Fang JW. Activation of tumor necrosis factor-[alpha] system in chronic hepatitis C virus infection. Dig Dis Sci. 1997; 42 (12): 2487. [DOI:10.1023/A:1018804426724] [PMID]
30. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994; 91 (11): 4854-8. [DOI:10.1073/pnas.91.11.4854] [PMID] [PMCID]
31. Ohlson L-O, Larsson B, Björntorp P, Eriksson H, Svärdsudd K, Welin L, et al. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia. 1988; 31 (11): 798-805. [DOI:10.1007/BF00277480] [PMID]
32. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino Jr RB, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes. 2005; 54 (11): 3140-7. [DOI:10.2337/diabetes.54.11.3140] [PMID]
33. Maxwell DB, Fisher EA, Ross-Clunis 3rd H, Estep HL. Serum alkaline phosphatase in diabetes mellitus. J Am Coll Nutr. 1986; 5 (1): 55-9. [DOI:10.1080/07315724.1986.10720112] [PMID]
34. Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009; 30 (2): 152-77. [DOI:10.1210/er.2008-0027] [PMID]
35. Berg C, Petersenn S, Lahner H, Herrmann BL, Buchfelder M, Droste M, et al. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: comparison with matched data from the general population and the effect of disease control. J Clin Endocrinol Metab. 2010; 95 (8): 3648-56. [DOI:10.1210/jc.2009-2570] [PMID]
36. Freda PU, Shen W, Heymsfield SB, Reyes-Vidal CM, Geer EB, Bruce JN, et al. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab. 2008; 93 (6): 2334-43. [DOI:10.1210/jc.2007-2780] [PMID] [PMCID]
37. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012; 148 (5): 852-71. [DOI:10.1016/j.cell.2012.02.017] [PMID] [PMCID]
38. Krssak M, Roden M. The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Rev Endocr Metab Disord. 2004; 5: 127-34. [DOI:10.1023/B:REMD.0000021434.98627.dc] [PMID]
39. Winhofer Y, Wolf P, Krššák M, Wolfsberger S, Tura A, Pacini G, et al. No evidence of ectopic lipid accumulation in the pathophysiology of the acromegalic cardiomyopathy. J Clin Endocrinol Metab. 2014; 99 (11): 4299-306. [DOI:10.1210/jc.2014-2242] [PMID]
40. Madsen M, Krusenstjerna-Hafstrøm T, Møller L, Christensen B, Vendelbo MH, Pedersen SB, et al. Fat content in liver and skeletal muscle changes in a reciprocal manner in patients with acromegaly during combination therapy with a somatostatin analog and a GH receptor antagonist: a randomized clinical trial. J Clin Endocrinol Metab. 2012; 97 (4): 1227-35. [DOI:10.1210/jc.2011-2681] [PMID]
41. Hjelmesæth J, Müller F, Jenssen T, Rollag H, Sagedal S, Hartmann A. Is there a link between cytomegalovirus infection and new-onset posttransplantation diabetes mellitus? Potential mechanisms of virus induced β-cell damage. Nephrol Dial Transplant. 2005; 20 (11): 2311-5. [DOI:10.1093/ndt/gfi033] [PMID]
42. Wang Y, Zhang X, Zheng X, Song G, Fang L, Wang Y, et al. Human cytomegalovirus infection and its association with gestational diabetes mellitus during pregnancy. PeerJ. 2022; 10: e12934. [DOI:10.7717/peerj.12934] [PMID] [PMCID]
43. Low H, Mukhamedova N, Cui HL, McSharry BP, Avdic S, Hoang A, et al. Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep. 2016; 16 (1): 186-200. [DOI:10.1016/j.celrep.2016.05.070] [PMID] [PMCID]
44. Du Y, Zhang G, Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J. 2018; 15 (1): 31. [DOI:10.1186/s12985-018-0937-3] [PMID] [PMCID]
45. Li L, Li Y, Dai Z, Liu M, Wang B, Liu S, et al. Lipid metabolism in vascular smooth muscle cells Infuenced by HCMV infection. Cell Physiol Biochem. 2016; 39 (5): 1804-12. [DOI:10.1159/000447880] [PMID]
46. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005; 128 (7): 1898-906. [DOI:10.1053/j.gastro.2005.03.084] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.