Volume 12, Issue 3 (9-2024)                   JoMMID 2024, 12(3): 179-189 | Back to browse issues page

Ethics code: 1


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roshani D, Ramazanzadeh R, Barzegar S, Arzanlou M, Mansouri M. Prevalence of TEM-Type Extended Spectrum Beta Lactamases in the Iranian Population: A Systematic Review and Meta-Analysis. JoMMID 2024; 12 (3) :179-189
URL: http://jommid.pasteur.ac.ir/article-1-644-en.html
Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
Abstract:   (145 Views)
Introduction: Extended-spectrum β-lactamases (ESBLs) are enzymes produced by Gram-negative bacteria, which confer resistance to many β-lactam antibiotics. Among these, TEM-type ESBLs, which are typically encoded by genes on plasmids, are highly prevalent and facilitate the spread among various bacterial species, leading to resistance against penicillins and cephalosporins. Ongoing surveillance of the prevalence and characteristics of TEM-ESBLs is crucial for informing antibiotic stewardship and implementing effective infection control measures to curb their dissemination. Methods: This meta-analysis aimed to evaluate the overall prevalence of TEM-type ESBLs in the Iranian population derived from studies conducted from 2007 to 2020. Relevant articles were systematically searched in PubMed, Science Direct, Google Scholar, Biological Abstracts, Web of Science, and SID databases, encompassing research from all Iranian provinces. After applying inclusion criteria and screening titles and abstracts, a refined selection of articles was chosen for full-text review and data extraction. The data extracted were analyzed using statistical software, with subgroup analyses performed to investigate sources of heterogeneity. Results: Analysis of the 202 studies revealed an overall prevalence of 27% for TEM-type ESBLs in Iran. Subgroup analysis indicated significant regional variations, with prevalence differing markedly among provinces. The highest prevalence was observed in Qom province at 51%. By sample type, the prevalence was notably higher in urine and stool isolates, reaching 76%. Among bacterial species, Escherichia coli and Klebsiella spp. exhibited the highest prevalence of TEM-type ESBLs, with a combined rate of 43%. The peak prevalence was noted in studies from 2019, at 32%. Conclusion: The high prevalence of antimicrobial resistance, particularly among Gram-negative bacteria, represents a critical challenge to public health and calls for specific interventions to manage and reduce ESBL spread. This study highlights the significant presence of TEM-type ESBLs in Iran, demonstrating the urgent need for enhanced surveillance and targeted interventions to address the variations in prevalence across different regions and sample types. The findings emphasize the importance of implementing robust antibiotic stewardship programs and stringent infection control measures to mitigate the dissemination of TEM-type ESBLs and preserve the effectiveness of β-lactam antibiotics.
Full-Text [PDF 2230 kb]   (65 Downloads)    
Type of Study: Review article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2024/01/4 | Accepted: 2024/09/11 | Published: 2024/12/22

References
1. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023: ciad428. [DOI:10.1093/cid/ciad428] [PMID]
2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629-55. [DOI:10.1016/S0140-6736(21)02724-0] [PMID]
3. Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017; 61 (1): 49-59. [DOI:10.1042/EBC20160063] [PMID]
4. Zaatout N, Bouras S, Slimani N. Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: A systematic review and meta-analysis. J. Water Health. 2021; 19 (5): 705-23. [DOI:10.2166/wh.2021.112] [PMID]
5. Rahamathullah N, Ragupathi P, Khamisani V, Sadiq AF, Mobiddo MA, Bagchi S, et al. Prevalence of class A ESBL, class B and D carbapenemase encoding genes genes (CTX-M, TEM, SHV, NDM, IMP, OXA-48) in Gram-negative bacterial pathogens isolated from various clinical samples collected from northern region of United Arab Emirates. medRxiv. 2024:2024.01. 26.24301841. [DOI:10.1101/2024.01.26.24301841]
6. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980; 289 (1036): 321-31. [DOI:10.1098/rstb.1980.0049] [PMID]
7. Philippon A, Arlet G, Lagrange PH. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994; 13 (1): S17-S29. [DOI:10.1007/BF02390681] [PMID]
8. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14 (4): 933-51. [DOI:10.1128/CMR.14.4.933-951.2001] [PMID] [PMCID]
9. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019; 431 (18): 3472-500. [DOI:10.1016/j.jmb.2019.04.002] [PMID] [PMCID]
10. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;2 08 (5007): 239-41. [DOI:10.1038/208239a0] [PMID]
11. Ali T, Ali I, Khan NA, Han B, Gao J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res Int. 2018; 2018: 9519718. [DOI:10.1155/2018/9519718] [PMID] [PMCID]
12. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist. 2010; 16 (1): 49-53. [DOI:10.1089/mdr.2009.0096] [PMID]
13. Enayatzadeh meymandi SA, Babaeekhou L, Ghane M. Distribution of Ambler Class A Β-lactamase Genes and Evaluation of Resistance Patterns in Multi-Drug and Extensively-Drug Resistant P. aeruginosa Clinical Isolates. Med Lab J. 2019; 13 (5): 1-7. [DOI:10.29252/mlj.13.5.1]
14. Rice LB, Willey SH, Papanicolaou GA, Medeiros AA, Eliopoulos GM, Moellering RC, et al. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990; 34 (11): 2193-99. [DOI:10.1128/AAC.34.11.2193] [PMID] [PMCID]
15. Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 2010; 34 (6): 1015-36. [DOI:10.1111/j.1574-6976.2010.00222.x] [PMID]
16. Avery C, Baker L, Jacobs DJ. Functional dynamics of substrate recognition in TEM beta-lactamase. Entropy. 2022; 24 (5): 729. [DOI:10.3390/e24050729] [PMID] [PMCID]
17. Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018; 5: 16. [DOI:10.3389/fmolb.2018.00016] [PMID] [PMCID]
18. Jabalameli L, Beigverdi R, Ranjbar HH, Pouriran R, Jabalameli F, Emaneini M. Phenotypic and genotypic prevalence of extended-spectrum β-Lactamase-Producing Escherichia coli: A systematic review and meta-analysis in Iran. Microbial Drug Resistance. 2021; 27 (1): 73-86. [DOI:10.1089/mdr.2019.0396] [PMID]
19. Alfonso AFM, De Jesus RTR, Dyquiangco ACM, Guides NMG, Nocasa SJNU, Peralta GSS, et al. The Emergence of bla-CTX-M and bla-TEM in ESBL Producing Klebsiella pneumoniae in Aquaculture in Southeast Asia: A Systematic Review. Asian J Biol Life Sci. 2022; 11 (2): 232-6. [DOI:10.5530/ajbls.2022.11.32]
20. Asgin N, Otlu B, Cakmakliogullari EK, Celik B. High prevalence of TEM, VIM, and OXA-2 beta-lactamases and clonal diversity among Acinetobacter baumannii isolates in Turkey. J Infect Dev Ctries. 2019; 13 (9): 794-801. [DOI:10.3855/jidc.11684] [PMID]
21. Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019; 11 (1): e2019041. [DOI:10.4084/mjhid.2019.041] [PMID] [PMCID]
22. Ain NU, Iftikhar A, Bukhari SS, Abrar S, Hussain S, Haider MH, et al. High frequency and molecular epidemiology of metallo-β-lactamase-producing gram-negative bacilli in a tertiary care hospital in Lahore, Pakistan. Antimicrob Resist Infect Control. 2018; 7: 1-9. [DOI:10.1186/s13756-018-0417-y] [PMID] [PMCID]
23. Bajpai T, Pandey M, Varma M, Bhatambare G. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 2017; 7 (1): 12-6. [DOI:10.4103/2231-0770.197508] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.