1. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023: ciad428. [
DOI:10.1093/cid/ciad428] [
PMID]
2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629-55. [
DOI:10.1016/S0140-6736(21)02724-0] [
PMID]
3. Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017; 61 (1): 49-59. [
DOI:10.1042/EBC20160063] [
PMID]
4. Zaatout N, Bouras S, Slimani N. Prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in wastewater: A systematic review and meta-analysis. J. Water Health. 2021; 19 (5): 705-23. [
DOI:10.2166/wh.2021.112] [
PMID]
5. Rahamathullah N, Ragupathi P, Khamisani V, Sadiq AF, Mobiddo MA, Bagchi S, et al. Prevalence of class A ESBL, class B and D carbapenemase encoding genes genes (CTX-M, TEM, SHV, NDM, IMP, OXA-48) in Gram-negative bacterial pathogens isolated from various clinical samples collected from northern region of United Arab Emirates. medRxiv. 2024:2024.01. 26.24301841. [
DOI:10.1101/2024.01.26.24301841]
6. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980; 289 (1036): 321-31. [
DOI:10.1098/rstb.1980.0049] [
PMID]
7. Philippon A, Arlet G, Lagrange PH. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994; 13 (1): S17-S29. [
DOI:10.1007/BF02390681] [
PMID]
8. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14 (4): 933-51. [
DOI:10.1128/CMR.14.4.933-951.2001] [
PMID] [
PMCID]
9. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019; 431 (18): 3472-500. [
DOI:10.1016/j.jmb.2019.04.002] [
PMID] [
PMCID]
10. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;2 08 (5007): 239-41. [
DOI:10.1038/208239a0] [
PMID]
11. Ali T, Ali I, Khan NA, Han B, Gao J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res Int. 2018; 2018: 9519718. [
DOI:10.1155/2018/9519718] [
PMID] [
PMCID]
12. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist. 2010; 16 (1): 49-53. [
DOI:10.1089/mdr.2009.0096] [
PMID]
13. Enayatzadeh meymandi SA, Babaeekhou L, Ghane M. Distribution of Ambler Class A Β-lactamase Genes and Evaluation of Resistance Patterns in Multi-Drug and Extensively-Drug Resistant P. aeruginosa Clinical Isolates. Med Lab J. 2019; 13 (5): 1-7. [
DOI:10.29252/mlj.13.5.1]
14. Rice LB, Willey SH, Papanicolaou GA, Medeiros AA, Eliopoulos GM, Moellering RC, et al. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990; 34 (11): 2193-99. [
DOI:10.1128/AAC.34.11.2193] [
PMID] [
PMCID]
15. Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 2010; 34 (6): 1015-36. [
DOI:10.1111/j.1574-6976.2010.00222.x] [
PMID]
16. Avery C, Baker L, Jacobs DJ. Functional dynamics of substrate recognition in TEM beta-lactamase. Entropy. 2022; 24 (5): 729. [
DOI:10.3390/e24050729] [
PMID] [
PMCID]
17. Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018; 5: 16. [
DOI:10.3389/fmolb.2018.00016] [
PMID] [
PMCID]
18. Jabalameli L, Beigverdi R, Ranjbar HH, Pouriran R, Jabalameli F, Emaneini M. Phenotypic and genotypic prevalence of extended-spectrum β-Lactamase-Producing Escherichia coli: A systematic review and meta-analysis in Iran. Microbial Drug Resistance. 2021; 27 (1): 73-86. [
DOI:10.1089/mdr.2019.0396] [
PMID]
19. Alfonso AFM, De Jesus RTR, Dyquiangco ACM, Guides NMG, Nocasa SJNU, Peralta GSS, et al. The Emergence of bla-CTX-M and bla-TEM in ESBL Producing Klebsiella pneumoniae in Aquaculture in Southeast Asia: A Systematic Review. Asian J Biol Life Sci. 2022; 11 (2): 232-6. [
DOI:10.5530/ajbls.2022.11.32]
20. Asgin N, Otlu B, Cakmakliogullari EK, Celik B. High prevalence of TEM, VIM, and OXA-2 beta-lactamases and clonal diversity among Acinetobacter baumannii isolates in Turkey. J Infect Dev Ctries. 2019; 13 (9): 794-801. [
DOI:10.3855/jidc.11684] [
PMID]
21. Pishtiwan AH, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr J Hematol Infect Dis. 2019; 11 (1): e2019041. [
DOI:10.4084/mjhid.2019.041] [
PMID] [
PMCID]
22. Ain NU, Iftikhar A, Bukhari SS, Abrar S, Hussain S, Haider MH, et al. High frequency and molecular epidemiology of metallo-β-lactamase-producing gram-negative bacilli in a tertiary care hospital in Lahore, Pakistan. Antimicrob Resist Infect Control. 2018; 7: 1-9. [
DOI:10.1186/s13756-018-0417-y] [
PMID] [
PMCID]
23. Bajpai T, Pandey M, Varma M, Bhatambare G. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 2017; 7 (1): 12-6. [
DOI:10.4103/2231-0770.197508] [
PMID] [
PMCID]