Volume 11, Issue 4 (12-2023)                   JoMMID 2023, 11(4): 226-230 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheikholeslami F. Rapid Diagnostic Technique for Rabies Virus Detection. JoMMID 2023; 11 (4) :226-230
URL: http://jommid.pasteur.ac.ir/article-1-638-en.html
WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (539 Views)
Precise diagnosis is crucial for implementing suitable and timely treatment strategies, especially when dealing with life-threatening infections like rabies. Rapid diagnosis of rabies is crucial for preventing transmission to the patient’s immediate contacts and medical staff, thereby controlling the further spread of the virus. Conventional methods for detecting rabies are either time-consuming or necessitate expensive equipment operated by trained professionals. This paper presents a novel rapid diagnostic method for rabies. This innovative approach leverages an isothermal reaction within a single platform, offering results within an hour and eliminating the need for specialized equipment. This method uses Cas13a enzyme, buffer, three guide RNAs, and a probe to detect rabies virus RNA using a lateral flow chromatography technique in samples suspected of rabies virus. After doing the test, the results are indicated by the presence of the control (C) and test (T) lines on the strip. Preliminary evaluations demonstrate that this rapid method correlates well with established diagnostic standards, showing promising sensitivity and specificity values.
Full-Text [PDF 642 kb]   (160 Downloads)    
Type of Study: Short communication | Subject: Diagnostic/screening methods and protocols
Received: 2023/12/18 | Accepted: 2024/01/28 | Published: 2024/02/24

1. Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol. 2018; 16 (4): 241-55. [DOI:10.1038/nrmicro.2018.11] [PMID] []
2. Gholami AR, Fayaz A, Farahtaj F. Rabies in Iran: Past, Present and Future. J Med Microbiol Infec Dis. 2014; 2 (1): 1-10.
3. Farahtaj F, Fayaz A, Howaizi N, Biglari P, Gholami A. Human rabies in Iran. Trop Doct. 2014; 44 (4): 226-9. [DOI:10.1177/0049475514528174] [PMID]
4. Rupprecht CE. The direct fluorescent antibody test.In:Rupprecht CE,Fooks AR, Abela-Ridder B, editors. Laboratory techniques in rabies, 5th edition, Geneva: World Health Organization; 2018; Volume 1, p 108-129.
5. Kamolvarin N, Tirawatnpong T, Rattanasiwamoke R, Tirawatnpong S, Panpanich T, Hemachudha T. Diagnosis of rabies by polymerase chain reaction with nested primers. J Infect Dis. 1993; 167 (1): 207-10. [DOI:10.1093/infdis/167.1.207] [PMID]
6. Naji E, Fadajan Z, Afshar D, Fazeli M. Comparison of Reverse Transcription Loop-Mediated Isothermal Amplification Method with SYBR Green Real-Time RT-PCR and Direct Fluorescent Antibody Test for Diagnosis of Rabies. Jpn J Infect Dis. 2020; 73 (1): 19-25. [DOI:10.7883/yoken.JJID.2019.009] [PMID]
7. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020; 38 (7): 870-4. [DOI:10.1038/s41587-020-0513-4] [PMID] []
8. Realegeno S, Niezgoda M, Yager PA, Kumar A, Hoque L, Orciari L, et al. An ELISA-based method for detection of rabies virus nucleoprotein-specific antibodies in human antemortem samples. PLoS One. 2018; 13 (11): e0207009. [DOI:10.1371/journal.pone.0207009] [PMID] []
9. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017; 550 (7675): 280-4. [DOI:10.1038/nature24049] [PMID] []
10. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016; 353 (6299): aaf5573. [DOI:10.1126/science.aaf5573] [PMID] []
11. Ren M, Mei H, Zhou J, Zhou M, Han H, Zhao L. Early diagnosis of rabies virus infection by RPA-CRISPR techniques in a rat model. Arch Virol. 2021; 166 (4): 1083-92. [DOI:10.1007/s00705-021-04970-x] [PMID] []
12. Myhrvold C , Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018; 360 (6387): 444-8. [DOI:10.1126/science.aas8836] [PMID] []
13. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 2018 Apr 19; 173 (3): 665-76. [DOI:10.1016/j.cell.2018.02.033] [PMID] []
14. Kellner MJ, Koob J, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019; 14 (10): 2986-3012. [DOI:10.1038/s41596-019-0210-2] [PMID] []
15. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017; 356 (6336): 438-42. [DOI:10.1126/science.aam9321] [PMID] []
16. Antropov DN, Stepanov GA. Molecular Mechanisms Underlying CRISPR/Cas-Based Assays for Nucleic Acid Detection. Curr Issues Mol Biol. 2023; 45 (1): 649-62. [DOI:10.3390/cimb45010043] [PMID] []
17. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017 Nov 24; 358(6366):1019-1027. [DOI:10.1126/science.aaq0180] [PMID] []

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.