Volume 12, Issue 2 (6-2024)                   JoMMID 2024, 12(2): 138-149 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Malik A S, Chishti M S, Bashir G, Ahangar I N. Multidrug-Resistant Uropathogenic Escherichia coli Typing by ERIC-PCR: A Genetic and Antibiogram Profiling in a Tertiary Care Hospital. JoMMID 2024; 12 (2) :138-149
URL: http://jommid.pasteur.ac.ir/article-1-630-en.html
Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Union Territory of Jammu and Kashmir, Pin 190011, India
Abstract:   (269 Views)
Introduction: Uropathogenic Escherichia coli (UPEC) is a leading cause of community-acquired and healthcare-associated infections, and antimicrobial resistance in UPEC poses significant challenges to managing these infections. This study aimed to investigate the molecular types of UPEC using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and analyze their resistance patterns in a tertiary care setting. Methods: A cross-sectional study was conducted at a tertiary care hospital, where 65 consecutive E. coli isolates from urinary specimens were collected. Isolates were identified biochemically and confirmed by 16S rRNA gene PCR. Antibiotic susceptibility testing was conducted following CLSI guidelines, and molecular typing was performed using ERIC-PCR. ERIC-PCR profiles were analyzed using PAST software version 4.0, generating a dendrogram to visualize similarity among ERIC types. Fisher's exact test was used to determine if specific ERIC types were significantly associated with particular antibiotic resistance profiles. Results: The results showed that 95% of the isolates were resistant to at least two antibiotics, with 92.3% being multidrug resistant (MDR). The highest resistance was observed against ampicillin, while no resistance was seen against colistin and tigecycline. The resistant isolates displayed 36 different antibiograms, indicating a significant degree of resistance variability. ERIC-PCR typing revealed 22 unique clusters at a similarity coefficient of approximately 70%, highlighting the genetic diversity of UPEC isolates in our setting. Conclusion: This study enhances the understanding of UPEC epidemiology in healthcare by revealing the molecular characteristics and resistance profiles of prevalent strains. The high occurrence of MDR UPEC and the absence of a correlation between ERIC types and antibiograms suggest adaptability and increased resistance. These results highlight the necessity for continuous surveillance to inform infection control measures and direct targeted interventions against the spread of MDR UPEC.
 
Full-Text [PDF 884 kb]   (61 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/12/6 | Accepted: 2024/09/20 | Published: 2024/09/18

References
1. Alsultan A, Elhadi N. Evaluation of ERIC-PCR method for determining genetic diversity among Escherichia coli isolated from human and retail imported frozen shrimp and beef. Food Contam. 2022; 9: 12. [DOI:10.1186/s40550-022-00098-1]
2. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004; 2 (2): 123-40. [DOI:10.1038/nrmicro818]
3. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol. 2017; 8:1566. [DOI:10.3389/fmicb.2017.01566]
4. Kubone PZ, Mlisana KP, Govinden U, Abia ALK, Essack SY. Antibiotic Susceptibility and Molecular Characterization of Uropathogenic Escherichia coli Associated with Community-Acquired Urinary Tract Infections in Urban and Rural Settings in South Africa. Trop Med Infect Dis. 2020; 5 (4): 176. [DOI:10.3390/tropicalmed5040176]
5. Kalal BS, Nagaraj S. Urinary tract infections: A retrospective, descriptive study of causative organisms and antimicrobial pattern of samples received for culture, from a tertiary care setting. Germs. 2016; 6 (4): 132-8. [DOI:10.11599/germs.2016.1100]
6. Barrett TJ, Lior H, Green JH, Khakhria R, Wells JG, Bell BP, et al. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157: H7 by using pulsed-field gel electrophoresis and phage typing. J Clin Microbiol. 1994; 32 (12): 3013-7. [DOI:10.1128/jcm.32.12.3013-3017.1994]
7. Ardakani MA, Ranjbar R. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method. Electron Physician. 2016; 8 (4): 2291-6. [DOI:10.19082/2291]
8. Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, et al. Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res. 2009; 109 (5): 511-7. [DOI:10.1016/j.envres.2009.02.014]
9. Adzitey F, Huda N, Ali GR. Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech. 2013; 3 (2): 97-107. [DOI:10.1007/s13205-012-0074-4]
10. Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi E. Genetic diversity study of various β-lactamase-producing multidrug-resistant Escherichia coli isolates from a tertiary care hospital using ERIC-PCR. Indian J Med Res. 2017; 146 (Supplement): S23-S29. [DOI:10.4103/ijmr.IJMR_575_16]
11. Versalovic J, Koeuth T and Lupski JR. Distribution of repetitive DNA-sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991; 19 (24): 6823-31. [DOI:10.1093/nar/19.24.6823]
12. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria with repetitive sequencebased polymerase chain reaction. Methods Mol. Cell Biol. 1994; 5: 25-40.
13. Rademaker JLW & de Bruijn FJ. Characterization and Classification of Microbes by Rep-PCR Genomic Fingerprinting and Computer Assisted Pattern Analysis. In: Caetano-Anollés, G. and Gresshoff, P.M., Eds., DNA Markers: Protocols, Applications and Overviews, John Wiley & Sons, Hoboken. 1997; 151-71.
14. Wan L, Wang Z, Yan Q, Wang X, Lei Y, Zuo L, et al. Genetic diversity of Escherichia coli isolated from commercial swine farms revealed by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and repetitive extragenic palindrome PCR (REP-PCR). Afr J Biotechnol. 2011; 10 (51): 10543-50. [DOI:10.5897/AJB11.1388]
15. Alshaikh SA, El-banna T, Sonbol F, Farghali MH. Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital. Ann Clin Microbiol Antimicrob. 2024; 23 (1): 20. [DOI:10.1186/s12941-024-00679-2]
16. Alttai NA, Alsanjary RA, Sheet OH. Genetic diversity of Escherichia coli harboring virulence gene Stx1 and Stx2 isolated from common carp fish in Nineveh Governorate using ERIC-PCR. Iraqi J Vet Med. 2023; 37 (3): 701-5. [DOI:10.33899/ijvs.2023.137140.2642]
17. Dibia C, Otokunefor K. Molecular typing of clinical and non-clinical Escherichia coli from Rivers State, Nigeria using amplification-based RAPD and ERIC-PCR typing methods. Niger J Biotechnol. 2023; 40 (2): 50-60. [DOI:10.4314/njb.v40i2.6]
18. Kass E. Pyelonephritis and bacteriuria. A major problem in preventive medicine. Ann Intern Med. 1962; 56: 46-53. [DOI:10.7326/0003-4819-56-1-46]
19. Tille, Patricia M., author. Bailey & Scott's Diagnostic Microbiology. 15th ed. Philadelphia, PA: Elsevier - Health Sciences Division; 2021.
20. Zoolkifli NW, Mutalib SA. Molecular typing among beef isolates of Escherichia coli using consensus repetitive intergenic enterobacteria-polymerase chain reaction (ERIC-PCR). AIP Conf Proc. 2013; 1571 (1): 654-9. [DOI:10.1063/1.4858729]
21. Fattahi F, Mirvaghefi A, Farahmand H, Rafiee G, Abdollahi A. Development of 16s rRNA targeted PCR method for the detection of Escherichia coli in rainbow trout (Oncorhynchus mykiss). Iran J Pathol. 2013; 8 (1): 36-44.
22. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100; 2021.
23. Carvalho de Moura AC, Irino K, Vidotto MC. Genetic variability of avian Escherichia coli strains evaluated by enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction. Avian Dis. 2001; 45 (1): 173-81. [DOI:10.2307/1593025]
24. Yun KW, Kim DS, Kim W, Lim IS. Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection. Korean J Pediatr. 2015; 58 (1): 20-7. [DOI:10.3345/kjp.2015.58.1.20]
25. Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms. 2023; 11 (9): 2169. [DOI:10.3390/microorganisms11092169]
26. Williamson CHD, Vazquez AJ, Nunnally AE, Kyger K, Fofanov VY, Furstenau TN, et al. ColiSeq: a multiplex amplicon assay that provides strain level resolution of Escherichia coli directly from clinical specimens. Microbiol Spectr. 2024; 12 (6): 1-17. [DOI:10.1128/spectrum.04139-23]
27. Donkor ES, Horlortu PZ, Dayie NT, Obeng-Nkrumah N, Labi AK. Community acquired urinary tract infections among adults in Accra, Ghana. Infect Drug Resist. 2019; 12: 2059-67. [DOI:10.2147/IDR.S204880]
28. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019: 11: 1756287219832172. [DOI:10.1177/1756287219832172]
29. Moubayed S, Ghazzawi J, Mitri R, Khalife S. Recent Data Characterizing the Prevalence and Resistance Patterns of FimH-producing Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infections in North Lebanon. Arch Clin Infect Dis. 2023; 18 (4): e135782. [DOI:10.5812/archcid-135782]
30. Sabat G, Rose P, Hickey WJ, Harkin JM. Selective and sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil. Appl Environ Microbiol. 2000; 66 (2): 844-9. [DOI:10.1128/AEM.66.2.844-849.2000]
31. Momtaz H, Rahimi E, Moshkelani S. Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet Med. 2018; 57 (4): 193-7. [DOI:10.17221/5916-VETMED]
32. Tonoyan L, Fleming GTA, Friel R, O'Flaherty V. Continuous culture of Escherichia coli, under selective pressure by a novel antimicrobial complex, does not result in development of resistance. Sci Rep. 2019; 9; 2401. [DOI:10.1038/s41598-019-38925-9]
33. Antimicrobial Guidelines for Urinary Tract Infections- ICMR. Published On 5 Mar 2017 11:44 AM | Updated On 18 Aug 2021.
34. Ibrahim DR, Dodd CE, Stekel DJ, Meshioye RT, Diggle M, Lister M, et al. Multidrug-resistant ESBL-producing E. coli in clinical samples from the UK. Antibiotics. 2023; 12 (1): 169. [DOI:10.3390/antibiotics12010169]
35. Bunduki GK, Heinz E, Phiri VS, Noah P, Feasey N, Musaya J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infect Dis. 2021; 21 (1): 753. [DOI:10.1186/s12879-021-06435-7]
36. Ten Doesschate T, van Mens SP, van Nieuwkoop C, Geerlings SE, Hoepelman AIM, Bonten MJM. Oral fosfomycin versus ciprofloxacin in women with E. coli febrile urinary tract infection, a double-blind placebo-controlled randomized controlled non-inferiority trial (FORECAST). BMC Infect Dis. 2018; 18 (1): 626. [DOI:10.1186/s12879-018-3562-2]
37. Adwan K, Jarrar N, Abu-Hijleh A, Adwan G, Awwad E. Molecular characterization of Escherichia coli isolates from patients with urinary tract infections in Palestine. J Med Microbiol. 2014; 63 (Pt 2): 229-34. [DOI:10.1099/jmm.0.067140-0]
38. Ramazanzadeh R, Zamani S, Zamani S. Genetic diversity in clinical isolates of Escherichia coli by enterobacterial repetitive intergenic consensus (ERIC)-PCR technique in Sanandaj hospitals. Iran J Microbiol. 2013; 5 (2): 126-31.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.