Volume 11, Issue 4 (12-2023)                   JoMMID 2023, 11(4): 174-178 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi K, Madadi-Goli N, Masoumi M, Nasehi M, Siadat S D, Vaziri F et al . Analyzing Antibiotic Resistance in Clinical Mycobacterium tuberculosis Isolates using Microplate Alamar Blue Assay. JoMMID 2023; 11 (4) :174-178
URL: http://jommid.pasteur.ac.ir/article-1-625-en.html
Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
Abstract:   (643 Views)
Introduction: Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common infectious diseases worldwide. Epidemiological studies of M. tuberculosis drug resistance are critical for improving patient treatment approaches and controlling the spread of tuberculosis. The present study aimed to determine antibiotic resistance among M. tuberculosis clinical isolates using the Microplate Alamar Blue Assay (MABA). Methods: In this descriptive cross-sectional study, 25 M. tuberculosis isolates from clinical samples were identified and confirmed using standard microbiological and biochemical tests. Then, the MIC for the antibiotics Bedaquiline, isoniazid, rifampin, ethambutol, ofloxacin, moxifloxacin, capreomycin, and streptomycin was determined using the MABA method. The results were analyzed using SPSS version 16 software. Results: Among the 25 investigated isolates, the frequencies for MDR, Pre-XDR, and XDR isolates were 20%, 8%, and 32%, respectively. The highest rate of drug resistance was to isoniazid (80%), rifampicin, and ethambutol (76%), and the highest rate of sensitivity was to moxifloxacin (68%). The frequency of isoniazid mono-resistance and rifampicin mono-resistance was 5 cases (50%) and 4 cases (40%), respectively. Conclusion: Our study revealed an alarming rate of MDR and XDR M. tuberculosis strains, indicating that current first-line treatments may be ineffective for a significant number of patients. The bedaquiline resistance among the isolates with no history of previous exposure to this drug suggests unexplored resistance mechanisms. Molecular techniques to accurately identify these mechanisms may contribute to developing more effective treatment strategies to combat drug-resistant tuberculosis.
Full-Text [PDF 807 kb]   (171 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/11/21 | Accepted: 2023/12/10 | Published: 2024/02/24

1. Meskini M, Madadi N, Ahmadi K, Vaziri F, Fateh A, Siadat SD. Tuberculosis prevention, diagnosis, and treatment financial profile during 2006-2021: PART A. Cost Eff Resour Alloc. 2023; 21 (1): 68. [DOI:10.1186/s12962-023-00479-z] [PMID] []
2. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2006; 50 (8): 2640-9. [DOI:10.1128/AAC.00112-06] [PMID] []
3. Kim S, Kim YK, Lee H, Cho J-E, Kim HY, Uh Y, et al. Interferon-gamma mRNA quantitative real-time polymerase chain reaction for the diagnosis of latent tuberculosis: a novel interferon-gamma release assay. Diagn Microbiol Infect Dis. 2013; 75 (1): 68-72. [DOI:10.1016/j.diagmicrobio.2012.09.015] [PMID]
4. Sharma D, Sharma J, Deo N, Bisht D. Prevalence and risk factors of tuberculosis in developing countries through health care workers. Microb Pathog. 2018;124:279-83. [DOI:10.1016/j.micpath.2018.08.057] [PMID]
5. Bagcchi S. WHO's global tuberculosis report 2022. The Lancet Microbe. 2023; 4 (1): e20. [DOI:10.1016/S2666-5247(22)00359-7] [PMID]
6. Méda ZC, Huang C-C, Sombié I, Konaté L, Somda PK, Djibougou AD, et al. Tuberculosis in developing countries: conditions for successful use of a decentralized approach in a rural health district. Pan Afr Med J. 2014; 17: 198. [DOI:10.11604/pamj.2014.17.198.3094] [PMID] []
7. Glaziou P, Floyd K, Raviglione MC, editors. Global epidemiology of tuberculosis. Semin Respir Crit Care Med. 2018; 39 (3): 271-85. [DOI:10.1055/s-0038-1651492] [PMID]
8. MacNeil A, Glaziou P, Sismanidis C, Date A, Maloney S, Floyd K. Global epidemiology of tuberculosis and progress toward meeting global targets-worldwide, 2018. MMWR Morb Mortal Wkly Rep. 2020; 69 (11): 281-5. [DOI:10.15585/mmwr.mm6911a2] [PMID] []
9. Bagcchi S. WHO's global tuberculosis report 2022. Lancet Microbe. 2023; 4 (1): e20. [DOI:10.1016/S2666-5247(22)00359-7] [PMID]
10. Daniel TM. The history of tuberculosis. Respir Med. 2006;100 (11): 1862-70. [DOI:10.1016/j.rmed.2006.08.006] [PMID]
11. Zahedi Bialvaei A, Asgharzadeh M, Aghazadeh M, Nourazarian M, Samadi Kafil H. Challenges of Tuberculosis in Iran. Jundishapur J Microbiol. 2017; 10 (3): e37866. [DOI:10.5812/jjm.37866]
12. Zamani S, Haeili M, Nasiri MJ, Imani Fooladi AA, Javadpour S, Feizabadi MM. Genotyping of Mycobacterium tuberculosis isolates from Hormozgan province of Iran based on 15-locus MIRU-VNTR and spoligotyping. Int J Bacteriol. 2016: 2016: 7146470. [DOI:10.1155/2016/7146470] [PMID] []
13. Horsburgh Jr CR, Barry III CE, Lange C. Treatment of tuberculosis. N Engl J Med. 2015; 373 (22): 2149-60. [DOI:10.1056/NEJMra1413919] [PMID]
14. Torfs E, Piller T, Cos P, Cappoen D. Opportunities for overcoming Mycobacterium tuberculosis drug resistance: emerging mycobacterial targets and host-directed therapy. Int J Mol Sci. 2019 ; 20 (12): 2868. [DOI:10.3390/ijms20122868] [PMID] []
15. Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017; 41 (3): 354-73. [DOI:10.1093/femsre/fux011] [PMID]
16. Lönnroth K, Mor Z, Erkens C, Bruchfeld J, Nathavitharana R, Van Der Werf M, et al. Tuberculosis in migrants in low-incidence countries: epidemiology and intervention entry points. Int J Tuberc Lung Dis. 2017; 21 (6): 624-37. [DOI:10.5588/ijtld.16.0845] [PMID]
17. Hargreaves S, Lönnroth K, Nellums LB, Olaru ID, Nathavitharana RR, Norredam M, et al. Multidrug-resistant tuberculosis and migration to Europe. Clin Microbiol Infect. 2017; 23 (3): 141-6. [DOI:10.1016/j.cmi.2016.09.009] [PMID]
18. Jafari A, Goswami R , Shirzad Aski H , Behnampour N , Taziki M, et al. Evaluation of Accuracy of Microplate Alamar Blue Assay and Proportion Method for Prompt Detection of Mycobacterium tuberculosis and Clinical Isolates of Multidrug-resistant M. tuberculosis. Jundishapur J Microbiol. 2021; 14 (3): e111212. [DOI:10.5812/jjm.111212]
19. Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect. 2017; 23 (3): 154-160. [DOI:10.1016/j.cmi.2016.10.022] [PMID]
20. Farzaneh SS, Norouzi F, Fazeli H, Moghim S, Nasr Esfahani B. Resistance to First-line Drugs in Clinical Isolates of Mycobacterium tuberculosis in Isfahan. J Isfahan Med Sch. 2022; 40 (685): 654-8.
21. Motavaf B, Keshavarz N, Ghorbanian F, Firuzabadi S, Hosseini F, Bostanabad SZ. Detection of genomic mutations in katG and rpoB genes among multidrug-resistant Mycobacterium tuberculosis isolates from Tehran, Iran. New Microbes New Infect. 2021: 41: 100879. [DOI:10.1016/j.nmni.2021.100879] [PMID] []
22. Safari M, Moghim S, Salehi M, Jafari R, Esfahani BN. Sequence-based detection of first-line and second-line drugs resistance-associated mutations in Mycobacterium tuberculosis isolates in Isfahan, Iran. Infect Genet Evol. 2020: 85: 104468. [DOI:10.1016/j.meegid.2020.104468] [PMID]
23. Ghajavand H, Kargarpour Kamakoli M, Khanipour S, Pourazar Dizaji S, Masoumi M, Rahimi Jamnani F, et al. High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother. 2019; 63 (3): e02530-18. [DOI:10.1128/AAC.02530-18] [PMID] []
24. Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, et al. High frequency of bedaquiline resistance in programmatically treated drug-resistant TB patients with sustained culture-positivity in Cape Town, South Africa. medRxiv. 2022:2022.11.14.22282167. [DOI:10.1101/2022.11.14.22282167]
25. Yang J, Pang Y, Zhang T, Xian X, Li Y, Wang R, et al. Molecular characteristics and in vitro susceptibility to bedaquiline of Mycobacterium tuberculosis isolates circulating in Shaanxi, China. Int J Infect Dis. 2020: 99: 163-70. [DOI:10.1016/j.ijid.2020.07.044] [PMID]
26. Castro RA, Ross A, Kamwela L, Reinhard M, Loiseau C, Feldmann J, et al. The genetic background modulates the evolution of fluoroquinolone-resistance in Mycobacterium tuberculosis. Mol Biol Evol. 2020; 37 (1): 195-207. [DOI:10.1093/molbev/msz214] [PMID] []
27. Sayadi M, Zare H, Jamedar SA, Hashemy SI, Meshkat Z, Soleimanpour S, et al. Genotypic and phenotypic characterization of Mycobacterium tuberculosis resistance against fluoroquinolones in the northeast of Iran. BMC Infect Dis. 2020; 20 (1): 390. [DOI:10.1186/s12879-020-05112-5] [PMID] []
28. Kabir S, Tahir Z, Mukhtar N, Sohail M, Saqalein M, Rehman A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med. 2020; 20 (1): 138. [DOI:10.1186/s12890-020-1172-4] [PMID] []
29. Pang Y, Zong Z, Huo F, Jing W, Ma Y, Dong L, et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob Agents Chemother. 2017; 61 (10): e00900-17. [DOI:10.1128/AAC.00900-17] [PMID] []
30. Welekidan LN, Skjerve E, Dejene TA, Gebremichael MW, Brynildsrud O, Tønjum T, et al. Frequency and patterns of first-and second-line drug resistance-conferring mutations in Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in a cross-sectional study in Tigray Region, Ethiopia. J Glob Antimicrob Resist. 2021: 24: 6-13. [DOI:10.1016/j.jgar.2020.11.017] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.