1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard [Internet]. 2023 [cited 12 June 2023]. Available from: https://covid19.who.int/
2. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020; 395 (10242): 1973-87. [
DOI:10.1016/S0140-6736(20)31142-9]
3. Forni G, Mantovani A. Vaccines and neutralizing monoclonal antibodies for COVID-19. N Engl J Med. 2022; 387 (7): 575-86.
4. Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020; 288: 198114. [
DOI:10.1016/j.virusres.2020.198114]
5. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020; 383: 2603-15. [
DOI:10.1056/NEJMoa2034577]
6. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384: 403-16. [
DOI:10.1056/NEJMoa2035389]
7. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020; 586: 594-9. [
DOI:10.1038/s41586-020-2814-7]
8. Ewer KJ, Barrett JR, Belij-Rammerstorfer S, Sharpe H, Makinson R, Morter R, et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med. 2021; 27: 270-8. [
DOI:10.1038/s41591-020-01194-5]
9. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021; 27: 1205-11. [
DOI:10.1038/s41591-021-01377-8]
10. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2020; 16 (5): 442-9. [
DOI:10.2174/1573399815666191024085838]
11. Onyemelukwe OU, Mamza AA, Suleiman YK, lyanda MA, Bello-Ovosi B, Bansi KI, et al. Prevalence of Pre-Diabetes, Diabetes and Associated Cardiovascular Risk Amongst Healthcare Workers in Ahmadu Bello University Teaching Hospital (ABUTH), Zaria using Glycated Haemoglobin. West Afr J Med. 2020; 37 (2): 91-9.
12. Ramli NS, Fauzi MFM, Moktar NMA, Hajib N, Nawi AM. Prevalence, characteristics, and predictors of healthcare workers with COVID-19 infection in an urban district in Malaysia. Pan Afr Med J. 2022; 41: 243. [
DOI:10.11604/pamj.2022.41.243.33300]
13. Carlsson S, Andersson T, Talbäck M, Feychting M. Incidence and prevalence of type 2 diabetes by occupation: results from all Swedish employees. Diabetologia. 2020; 63 (1): 95-103. [
DOI:10.1007/s00125-019-04997-5]
14. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020; 34 (9): 107637. [
DOI:10.1016/j.jdiacomp.2020.107637]
15. Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci. 2008; 13: 1227-39 [
DOI:10.2741/2757]
16. Ishaq SE, Abdulqadir SZ, Khudhur ZO, Omar SA, Qadir MK, Awla HK, et al. Comparative study of SARS-CoV-2 antibody titers between male and female COVID-19 patients living in Kurdistan region of Iraq. Gene Rep. 2021; 25: 101409. [
DOI:10.1016/j.genrep.2021.101409]
17. Ciarambino T, Para O, Giordano M. Immune system and COVID-19 by sex differences and age. Womens Health (Lond). 2021; 17: 17455065211022262. [
DOI:10.1177/17455065211022262]
18. Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019; 156 (1): 9-22. [
DOI:10.1111/imm.13004]
19. Fink AL, Klein SL. The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Curr Opin Physiol. 2018; 6: 16-20. [
DOI:10.1016/j.cophys.2018.03.010]
20. Migliore L, Nicolì V, Stoccoro A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines. 2021; 9 (6): 652. [
DOI:10.3390/biomedicines9060652]
21. Rehman S, Ravinayagam V, Nahvi I, Aldossary H, Al-Shammari M, Amiri MSA, et al. Immunity, Sex Hormones, and Environmental Factors as Determinants of COVID-19 Disparity in Women. Front Immunol. 2021; 12: 680845. [
DOI:10.3389/fimmu.2021.680845]
22. Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri MA. Gender-Specific Impact of Sex Hormones on the Immune System. Int J Mol Sci. 2023; 24 (7): 6302. [
DOI:10.3390/ijms24076302]
23. Murgia F, Giagnoni F, Lorefice L, Caria P, Dettori T, D'Alterio MN, et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines. 2022; 10 (12): 3107. [
DOI:10.3390/biomedicines10123107]
24. Taslem Mourosi J, Anwar S, Hosen MJ. The sex and gender dimensions of COVID-19: A narrative review of the potential underlying factors. Infect Genet Evol. 2022; 103:105338. [
DOI:10.1016/j.meegid.2022.105338]
25. Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res. 2020; 116 (14): 2197-2206. [
DOI:10.1093/cvr/cvaa284]
26. Patil A, Tripathy JP, Deshmukh V, Sontakke B, Tripathi SC. Sex hormones and COVID-19: tussle between the two. Monaldi Arch Chest Dis. 2020; 90 (4). [
DOI:10.4081/monaldi.2020.1461]
27. Busse PJ, Mathur SK. Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol. 2010; 126 (4): 690-9 [
DOI:10.1016/j.jaci.2010.08.011]
28. Stiasny K, Aberle JH, Keller M, Grubeck-Loebenstein B, Heinz FX. Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One. 2012; 7 (3): e34145. [
DOI:10.1371/journal.pone.0034145]
29. Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front Physiol. 202; 11: 571416. [
DOI:10.3389/fphys.2020.571416]
30. Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, et al. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol. 2023; 14: 1146704. [
DOI:10.3389/fimmu.2023.1146704]
31. van den Berg JM, Remmelzwaal S, Blom MT, van Hoek BACE, Swart KMA, Overbeek JA, et al. Effectiveness of COVID-19 Vaccines in Adults with Diabetes Mellitus: A Systematic Review. Vaccines (Basel). 2022; 11 (1): 24. [
DOI:10.3390/vaccines11010024]
32. He YF, Ouyang J, Hu XD, Wu N, Jiang ZG, Bian N, et al. Correlation between COVID-19 vaccination and diabetes mellitus: A systematic review. World J Diabetes. 2023; 14 (6): 892-918. [
DOI:10.4239/wjd.v14.i6.892]
33. Kusunoki H, Ekawa K, Ekawa M, Kato N, Yamasaki K, Motone M, Shimizu H. Trends in Antibody Titers after SARS-CoV-2 Vaccination-Insights from Self-Paid Tests at a General Internal Medicine Clinic. Medicines (Basel). 2023; 10 (4): 27. [
DOI:10.3390/medicines10040027]
34. Mochizuki T, Hori T, Yano K, Ikari K, Okazaki K. Factors Associated with Change in SARS-CoV-2 Antibody Titers from Three to Six Months after the Administration of the BNT162b2 mRNA COVID-19 Vaccine among Healthcare Workers in Japan: A Prospective Study. Intern Med. 2022; 61 (8): 1139-43. [
DOI:10.2169/internalmedicine.8902-21]
35. Batra N, Acharya S, Ahuja A, Saboo K. Guarding Health: A Comprehensive Review of Nosocomial Infections in Sickle Cell Anemia, a Multifaceted Approach to Prevention. Cureus. 2024; 16 (1): e53224. [
DOI:10.7759/cureus.53224]