Volume 11, Issue 3 (9-2023)                   JoMMID 2023, 11(3): 155-161 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinpour I, Fozouni L, Khademi M, Movaghari M, Akhoondi M M. The Impact of Gold Nanoparticle Susceptibility on Drug Resistance Phenotypes in Uropathogenic Escherichia coli. JoMMID 2023; 11 (3) :155-161
URL: http://jommid.pasteur.ac.ir/article-1-593-en.html
Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Abstract:   (742 Views)
Introduction: The widespread use of antibiotics has contributed to the dissemination of multidrug-resistant pathogens. This study aimed to assess the prevalence of Escherichia coli strains associated with urinary tract infections, characterized by diverse drug-resistance phenotypes. Additionally, the antibacterial properties of gold nanoparticles were examined against each phenotype to determine their effectiveness. Methods: This cross-sectional study was conducted on 170 E. coli strains isolated from 250 urine samples collected from symptomatic and asymptomatic patients with urinary tract infections (UTIs) between August 2022 and July 2023. The antibiotic susceptibility profiles across various classes of antibiotics were determined using the Kirby-Bauer method. At the same time, the minimum inhibitory concentrations of gold nanoparticles were assessed through the microdilution broth test. Results: Among E. coli isolates, 91 (53.53%), 45 (26.47%), and 17 (10%) isolates were identified as multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR), respectively. The MIC of gold nanoparticles that inhibited the growth of 90% of PDR isolates (MIC90=200 ppm) was two times higher than the MIC90 against XDR isolates (MIC90=100 ppm) and four times higher than the MIC90 against MDR isolates (MIC90=50 ppm). There was also a significant difference between the MIC90 and the MIC of gold nanoparticles that inhibited the growth of 50% of PDR and XDR bacteria (P<0.05). Conclusion: The emergence of MDR, XDR, and PDR uropathogenic E. coli isolates represents a significant societal health concern. Considering the favorable in vitro antimicrobial potential of gold nanoparticles against uropathogenic E. coli isolates, it is recommended to further analyze their applicability as antibiotic alternatives by conducting in vivo studies.
Full-Text [PDF 851 kb]   (190 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/09/1 | Accepted: 2023/09/10 | Published: 2023/11/11

References
1. Loras C, Mendes AC, Peixe L, Novais Â, Alós J-I. Escherichia coli resistant to fosfomycin from urinary tract infections: detection of the fosA3 gene in Spain. J Glob Antimicrob Resist. 2020; 21: 414-16. [DOI:10.1016/j.jgar.2020.01.023] [PMID]
2. Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Micro Physiol. 2014; 65: 337-72. [DOI:10.1016/bs.ampbs.2014.08.006] [PMID]
3. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015; 12 (10): 570-84. [DOI:10.1038/nrurol.2015.199] [PMID]
4. Azargun R, Soroush Barhaghi MH, Samadi Kafil H, Ahangar Oskouee M, Sadeghi V, Memar MY, et al. Frequency of DNA gyrase and topoisomerase IV mutations and plasmid-mediated quinolone resistance genes among Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in Azerbaijan, Iran. J Glob Antimicrob Resist. 2019; 17: 39-43. [DOI:10.1016/j.jgar.2018.11.003] [PMID]
5. Tabasi M, Karam MRA, Habibi M, Yekaninejad MS, Bouzari S. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health Res Perspect. 2015; 6 (4): 261-68. [DOI:10.1016/j.phrp.2015.08.002] [PMID] [PMCID]
6. Hasani L, Fozouni L. Study of Antibacterial Activity of Gentamicin-Cetirizine on Uropathogenic Escherichia coli Isolates. Infect Epidemiol Microbiol. 2021; 7 (1): 37-43. [DOI:10.52547/iem.7.1.37]
7. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18 (3): 268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
8. Lin LCW, Chattopadhyay S, Lin JC, HU CMJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthc Mater. 2018; 7 (13): e1701395. [DOI:10.1002/adhm.201701395] [PMID]
9. Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. Chemistry Select. 2019; 4 (22): 6719-38. [DOI:10.1002/slct.201900083]
10. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial Gold Nanoclusters. ACS Nano. 2017; 11 (7): 6904-10. [DOI:10.1021/acsnano.7b02035] [PMID]
11. Manuselis M. Textbook of Diagnostic Microbiology: 5th Edition. SAUNDERS, 2015.
12. Nwafia IN, Ohanu ME, Ebede SO, Ozumba UC. Molecular detection and antibiotic resistance pattern of extended‑ spectrum beta‑lactamase producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann Clin Microbiol Antimicrob. 2019; 18 (1): 41. [DOI:10.1186/s12941-019-0342-9] [PMID] [PMCID]
13. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute. 2020.
14. Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum betalactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019; 8 (1): 39. [DOI:10.1186/s13756-019-0488-4] [PMID] [PMCID]
15. Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci. Rep.2021; 11: 6112. [DOI:10.1038/s41598-021-85509-7] [PMID] [PMCID]
16. Mardani S, FozouniL, Najafpour Gh. Zinc Oxide Nanoparticles: A Promising Solution for Controlling the Growth of Gentamicin-Resistant Uropathogenic Escherichia coli. Infect Epidemiol Microbiol. 2022; 8 (2): 99-06. [DOI:10.52547/iem.8.2.99]
17. Fozouni L, Khosravi M, Pordeli HR, Mokaram R. Activity of Gemifloxacin against Levofloxacin and Ciprofloxacin-Resistant Escherichia coli Displaying DNA gyrase Isolated from Patients Admitted to the intensive care unit. Iran J Infect Dis Trop Med. 2019; 23 (83): 67-74.
18. Rezai MS, Salehifar E, Rafiei A, Langaee T, Rafati M, Shafahi K, et al. Characterization of multidrug resistant extended-spectrum beta-lactamase-producing Escherichia coli among uropathogens of pediatrics in North of Iran. Biomed Res Int. 2015; 2015: 309478. [DOI:10.1155/2015/309478] [PMID] [PMCID]
19. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016; 6 (4): a025387. [DOI:10.1101/cshperspect.a025387] [PMID] [PMCID]
20. Hussain A, Ewers C, Nandanwar N, Guenther S, Jadhav S, Wieler LH, et al. Multi resistant uropathogenic Escherichia coli from a region in India where urinary tract infections are endemic: genotypic and phenotypic characteristics of sequence type 131 isolates of the CTX-M-15 extended-spectrum-β-lactamase-producing lineage. Antimicrob Agents Chemother. 2012; 56 (12): 6358-65. [DOI:10.1128/AAC.01099-12] [PMID] [PMCID]
21. Yun KW, Kim DS, Kim W, Lim IS. Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection. Korean J Pediatr. 2015; 58 (1): 20-7. [DOI:10.3345/kjp.2015.58.1.20] [PMID] [PMCID]
22. Begum N, Shamsuzzaman SM. Emergence of multidrug resistant and extensively drug resistant community acquirer uropathogens in Dhaka city, Bangladesh. Bangladesh J Med Microbiol. 2015; 9 (2): 7-12. [DOI:10.3329/bjmm.v9i2.31414]
23. Al-Hasani MH, Al-Rubaye DS, Al-Rubaye DS, Abdelhameed A. The Emergence of Multidrug-Resistant (MDR), Extensively Drug-Resistant (XDR), and Pandrug-Resistant (PDR) In Iraqi Clinical Isolates of Escherichia coli. J Popul Ther Clin Pharmacol. 2023; 30 (5): 469-82. [DOI:10.47750/jptcp.2023.30.05.047]
24. Purohit MR, Lindahl LF, Diwan V, Marrone G, Lundborg CS. High levels of drug resistance in commensal E. coli in a cohort of children from rural central India. Sci Rep. 2019; 9 (1): 6682. [DOI:10.1038/s41598-019-43227-1] [PMID] [PMCID]
25. Huang IF, Lee WY, Wang JL, Hung CH, Hu HH, Hung WY, et al. Fecal carriage of multidrug-resistant Escherichia coli by community children in southern Taiwan. BMC Gastroenterol. 2018; 18 (1): 86. [DOI:10.1186/s12876-018-0807-x] [PMID] [PMCID]
26. Zhou Y, Zhu X, Hou H, Lu Y, Yu J, Mao L, et al. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: A hospital-based study. BMC Infect Dis. 2018; 18 (1): 63. [DOI:10.1186/s12879-017-2936-1] [PMID] [PMCID]
27. Wang F. Doxorubicin-tethered responsive gold nanopartcles facilitate intracellular drug delivery for overcoming multi drug resistance in cancer cells. ACS Nano. 2011; 5 (5): 3679-92. [DOI:10.1021/nn200007z] [PMID]
28. Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010; 31 (4): 706-13. [DOI:10.1016/j.biomaterials.2009.09.081] [PMID]
29. Hajimohammad A, Fozouni L. Antibacterial Effect of Zinc Oxide Nanoparticles on Mupirocin-Resistant Staphylococcus aureus Isolated from Nasal Carriers. Int J Basic Sci Med. 2018; 3 (2): 78-82. [DOI:10.15171/ijbsm.2018.14]
30. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnol. 2012; 10: 19. [DOI:10.1186/1477-3155-10-19] [PMID] [PMCID]
31. Prema P, Thangapandiyan S. In-vitro antibacterial activity of gold nanoparticles capped with polysaccharide stabilizing agents. Int J Pharm Pharm Sci. 2013; 5 (1): 310-14.
32. Grace AN, Pandian K. Quinolone Antibiotic-Capped Gold Nanoparticles And Their Antibacterial Efficacy Against Gram Positive And Gram Negative Organisms. J Bionanoscience. 2007; 1 (2): 96-105. [DOI:10.1166/jbns.2007.018]
33. Enayatimoghaddam N, Fozouni L, Ahani Azari A. Gold nanoparticles: An offer to control of vancomycin-resistant enterococci in wastewater. JAEHR. 2020; 8 (3): 198-05.
34. Shahzadi Sh, Zafar N, Riaz S, Sharif R, Nazir J, Naseem Sh. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials. 2016; 6 (3): 71. [DOI:10.3390/nano6040071] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.