Volume 12, Issue 1 (3-2024)                   JoMMID 2024, 12(1): 22-34 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sirajudeen A A O, Sanusi J F, Akintola O A, Omotosho Sakariyau A, Adesina O F, Bankole S. Eco-Friendly Production of Silver Nanoparticles from Vernonia amygdalina and Citropsis articulata: An Assessment of Antibacterial Properties against Oral Bacteria. JoMMID 2024; 12 (1) :22-34
URL: http://jommid.pasteur.ac.ir/article-1-581-en.html
Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta 111105, Ogun State, Nigeria
Abstract:   (241 Views)
Introduction: Traditional chewing sticks from Vernonia amygdalina and Citropsis articulata have been used for oral hygiene in African rural communities. This study pioneers an eco-friendly approach to silver nanoparticle (AgNP) synthesis using stem extracts from these medicinal plants, addressing environmental concerns associated with conventional methods. The antibacterial properties of the AgNPs against oral bacterial strains are assessed, offering a sustainable solution for oral health care. Methods: AgNPs were synthesized using aqueous and ethanolic stem extracts of V. amygdalina and C. articulata. Characterization was performed using UV-visible and FTIR spectroscopy. Phytochemical analysis revealed a diverse profile of bioactive compounds, with ethanolic extracts showing greater diversity. The AgNPs were tested against 100 bacterial isolates from dental caries patients at the Federal Medical Center, Abeokuta. Results: Molecular identification revealed three prevalent bacterial isolates: Bacillus fungorum (strain CUAB-AKINTOLA01), Klebsiella pneumonia (strain CUAB-AKINTOLA02), and K. pneumonia (strain CUAB-AKINTOLA03). The extracts from V. amygdalina and C. articulata, as well as the biofabricated AgNPs, showed significant antibacterial activity against these oral pathogens. Notably, AgNPs from V. amygdalina exhibited higher zones of inhibition, with B. fungorum being the most susceptible. These findings suggest the potential of these eco-friendly AgNPs as an effective antibacterial agent against oral bacterial infections. Conclusion: This study highlights the potent antibacterial efficacy of V. amygdalina and C. articulata stem extracts, as well as the silver nanoparticles biosynthesized from these extracts, against oral bacterial pathogens. While these findings are promising, further investigations are necessary to fully elucidate the therapeutic potential of these eco-friendly agents in the prevention and treatment of dental plaque-associated diseases.

 
Full-Text [PDF 1868 kb]   (74 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/08/10 | Accepted: 2024/05/21 | Published: 2024/06/8

References
1. Osho A, Adelani OA. The antimicrobial effect of some selected Nigerian chewing sticks on clinical isolates of Candida species. J Microbiol Res. 2012; 2 (1): 1-5. [DOI:10.5923/j.microbiology.20120201.01]
2. Nyambe MM, Kwembeya EG, Lisao K, Hans R. Oral hygiene in Namibia: A case of chewing sticks. J Ethnopharmacol. 2021; 227: 114203. [DOI:10.1016/j.jep.2021.114203] [PMID]
3. Ndukwe KC, Okeke IN, Lamikanra A, Adesina SK, Aboderin O. Antibacterial activity of aqueous extracts of selected chewing sticks. J Contemp Dent. 2007; 3 (6): 86-94. [DOI:10.5005/jcdp-6-3-86] [PMID]
4. Akaji, EA. Complementary and alternative medicine. In pharmacological studies in natural oral care (eds Chauhan DN, Singh PR, Chauhan NS, Shah K). Chapter 4: 61-81 [DOI:10.1002/9781394167197.ch4]
5. Osuh ME, Oke GA, Lilford RJ, Osuh JI, Lawal FB, Gbadebo SO, ... Harris B. Oral health in an urban slum, Nigeria: residents' perceptions, practices and care-seeking experiences. BMC oral health, 2023; 23 (1): 657. [DOI:10.1186/s12903-023-03303-5] [PMID] []
6. Chernousova S, Epple M. Silver as antibacterial agent; ion, nanoparticle, and metal. Angew Chem Int. 2013; 52 (6): 1636-53. [DOI:10.1002/anie.201205923] [PMID]
7. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019; 20: 449. [DOI:10.3390/ijms20020449] [PMID] []
8. Zhang C, Liang Z, Hu Z. Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Resour. 2014; 50: 350-58. [DOI:10.1016/j.watres.2013.10.047] [PMID]
9. Khan SU, Saleh TA, Wahab A, Khan MHU, Khan D, Khan WU, et al. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomed. 2018; 13: 733-62. [DOI:10.2147/IJN.S153167] [PMID] []
10. Stracy M, Snitser O, Yelin I, Amer Y, Parizade M, Katz R, ... Kishony R. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Sci. 2022; 375 (6583): 889-94. [DOI:10.1126/science.abg9868] [PMID] []
11. Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020; 15 (1): 819-39. [DOI:10.1515/biol-2020-0094] [PMID] []
12. Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Curr Res Green Sustain Chem. 2012; 2: 141-47. [DOI:10.4236/gsc.2012.24020]
13. Yasmin H, Anbumalarmathi J, Sharmili SA. Phytochemical analysis and antimicrobial activity of garlic (Allium sativum L.) and onion (Allium cepa L.). Res. Crops. 2018; 19 (2): 245-48. [DOI:10.5958/2348-7542.2018.00035.9]
14. Aritonang HF, Koleangan H, Wuntu AD. Synthesis of silver nanoparticles using aqueous extract of medicinal plants (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol. 2019; Article ID 8642303 [DOI:10.1155/2019/8642303] [PMID] []
15. Sirajudeen AAO, Annuar MSM, Subramaniam R. Composite of medium‐chain‐length polyhydroxyalkanoates‐co‐methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Biotechnol Appl Biochem. 2021; 68 (2): 307-18. [DOI:10.1002/bab.1928] [PMID]
16. Adeyemi SA, Onajobi IB, Agbaje AB, Sirajudeen AO. Comparison of the effectiveness of antibacterial activities of locally made black soap and some selected medicated soaps on isolated human skin bacteria. Egypt Acad J Biol. 2016; 8 (1): 47-56. [DOI:10.21608/eajbsg.2016.16477]
17. Onajobi IB, Sanuth HA, Laba SA, Sirajudeen AAO. Analysis of selected borehole filtered samples in ijebu-ode, Ogun State, Nigeria. Afr J Sci Nat. 2018; 8: 1-9. [DOI:10.46881/ajsn.v8i0.160]
18. Ringim MS, Gumel AM, Shiaka GP. Isolation and molecular identification of hydrocarbon degradation bacteria from contaminated soils in mechanic village Dutse, Jigawa State. Int J Microbiol Biotechnol. 2020; 5 (1): 28-33. [DOI:10.11648/j.ijmb.20200501.15]
19. Wani PA, Abiodun AA, Olusesi YK, Rafi N, Wani U, Oluwaseun OI, Sirajudeen AAO. Hydrocarbon degradation and metal remediation by hydrocarbon-utilising and metal-tolerant Klebsiella pneumoniae YSA-9 isolated from soil contaminated with petroleum. Chem Ecol. 2022; 38 (8): 744-59. [DOI:10.1080/02757540.2022.2117308]
20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44 (16): 6614-24. [DOI:10.1093/nar/gkw569] [PMID] []
21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018; 35 (6): 1547-49. [DOI:10.1093/molbev/msy096] [PMID] []
22. Onajobi IB, Adeola OS, Idowu EO, Banjo OA, Bankole SA, Sirajudeen AO, Aina SA. Impact of fermentation on food borne pathogens. Trends Food Sci Technol. 2019; 4 (2): 440-45.
23. CLSI. Performance standard for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100 Wayne, PA: Clinical and laboratory standards institute. 2020.
24. Yugandhar P, Savithramma N. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. Appl Nanosci. 2016; 6: 223-33. [DOI:10.1007/s13204-015-0428-4]
25. Liu X, Wang L, Han M, Xue QH, Zhang GS, Gao J. Bacillus fungorum sp. nov., a bacterium isolated from spent mushroom substrate. Int J Syst Evol Microbiol. 2020; 70 (3): 1457-62. [DOI:10.1099/ijsem.0.003673] [PMID]
26. Udochukwu U, Omeje FI, Uloma IS, Oseiwe FD. Phytochemical analysis of Vernonia amygdalina and Ocimum gratissimum extracts and their antibacterial activity on some drug resistant bacteria. Am J Res Commu. 2015; 3 (5): 67-79.
27. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers. 2018; 11 (1): 28. [DOI:10.3390/cancers11010028] [PMID] []
28. Darkwah WK, Ao Y, Adinortey MB, Weremfo A, Abrokwah FK, Afriyie E. Total phenolic, flavonoid and alkaloid contents, oxidative DNA damage protective and antioxidant properties of methanol and aqueous extracts of Dissotis rotundifolia whole plant. Free Radic Antioxid. 2018; 8 (2): 82-88. [DOI:10.5530/fra.2018.2.13]
29. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, ... Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J agric food chem. 2011; 59 (23): 12361-367. [DOI:10.1021/jf203146e] [PMID]
30. Acheampong DO, Baffour IK, Atsu-Barku VY, Addo JK, Essuman MA, Boye A. Zanthoxylum zanthoxyloides alkaloidal extract improves ccl4-induced hepatocellular carcinoma-like phenotypes in rats. Evid Based Complementary Altern Med. 2021; Article ID 3804379 [DOI:10.1155/2021/3804379] [PMID] []
31. Olushola-Siedoks AAM, Igbo UE, Asieba G, Damola IA, Igwe CC. Elemental analysis and phytochemical characterization of Zanthoxylum zanthoxyloides (Lam.) Zepern. and Timler stem bark. J pharmacogn phytochem. 2020; 9 (5): 41-46. [DOI:10.22271/phyto.2020.v9.i5a.12420]
32. Arya G, Mankamna K, Gupta N, Kumar A, Chandra R, Nimesh S. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif Cells Nanomed Biotechnol. 2017; 46 (5): 985-93 [DOI:10.1080/21691401.2017.1354302] [PMID]
33. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013; 31 (2): 346-56 [DOI:10.1016/j.biotechadv.2013.01.003] [PMID]
34. Odeniyi MA, Okumah VC, Adebayo-Tayo BC, Odeniyi OA. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain Chem Pharm. 2020; 15: 100197. [DOI:10.1016/j.scp.2019.100197]
35. Aderibigbe SA, Opayemi OS, Bolaji SA, Idowu SO. In vitro effect of three tropical plants on adult Haemonchus placei, an haematophagous nematode from cattle. Beni-Suef Uni J Basic Appl Sci. 2022; 11 (1): 1-10. [DOI:10.1186/s43088-022-00255-7]
36. Chen X, Daliri EBM, Chelliah R, Oh DH. Isolation and identification of potentially pathogenic microorganisms associated with dental caries in human teeth biofilms. Microorganisms. 2020; 8 (10): 1596. [DOI:10.3390/microorganisms8101596] [PMID] []
37. Derafshi R, Bazargani A, Ghapanchi J, Izadi Y, Khorshidi H. Isolation and identification of nonoral pathogenic bacteria in the oral cavity of patients with removable dentures. J Int Soc Prev Community Dent. 2017; 7 (4): 197-01 [DOI:10.4103/jispcd.JISPCD_90_17] [PMID] []
38. Ejaz H, Wang N, Wilksch JJ, Page AJ, Cao H, Gujaran S, et al. Phylogenetic analysis of Klebsiella pneumoniae from hospitalized children, Pakistan. Emerg Infect Dis. 2017; 23 (11): 1872. [DOI:10.3201/eid2311.170833] [PMID] []
39. Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Ohkuma M, Kobayashi H. Lentilactobacillus fungorum sp. nov., isolated from spent mushroom substrates. Int J Syst Evol Microbiol. 2021; 71 (12): 005184. [DOI:10.1099/ijsem.0.005184] [PMID]
40. Desalegn T, Ravikumar CR, Murthy HC. Eco-friendly synthesis of silver nanostructures using medicinal plant Vernonia amygdalina Del. leaf extract for multifunctional applications. Appl Nanosci. 2021; 11 (2): 535-51. [DOI:10.1007/s13204-020-01620-7]
41. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Perumal V, Saheed MSM. Antimicrobial property of biosynthesized silver nanoparticles. In: Bhat A, Khan I, Jawaid M, Suliman F, Al-Lawati H, Al-Kindy S. (eds) Nanomaterials for healthcare, energy and environment. Adv Struct Mater. 2019; vol 118. Springer, Singapore. [DOI:10.1007/978-981-13-9833-9_5]
42. Vijayakumari J, Raj LS. Eco-friendly synthesis of plant-mediated silver nanoparticles using papaya leaf extract and evaluation of their anti-microbial activities. Proceedings of the National Conference on Climate Change and Sustainable Environment. 2018; 15-16, March. India
43. Bouqellah NA, Mohamed MM, Ibrahim Y. Synthesis of eco-friendly silver nanoparticles using Allium sp. and their antimicrobial potential on selected vaginal bacteria. Saudi J Biol Sci. 2019; 26 (7): 1789-94. [DOI:10.1016/j.sjbs.2018.04.001] [PMID] []
44. Yarrappagaari S, Gutha R, Narayanaswamy L, Thopireddy L, Benne L, Mohiyuddin SS, et al. Eco-friendly synthesis of silver nanoparticles from the whole plant of Cleome viscosa and evaluation of their characterization, antibacterial, antioxidant and antidiabetic properties. Saudi J Biol Sci. 2020; 27 (12): 3601-14. [DOI:10.1016/j.sjbs.2020.07.034] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.