Volume 11, Issue 2 (6-2023)                   JoMMID 2023, 11(2): 110-116 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharma S K, Bhadra S, Sarwat T, Kakru D K. Antibiotic Resistance Rate among Bacterial Pathogens Isolated from Bronchoalveolar Lavage Fluid at a Tertiary Care Center in Western Uttar Pradesh, India. JoMMID 2023; 11 (2) :110-116
URL: http://jommid.pasteur.ac.ir/article-1-525-en.html
Department of Microbiology, School of Medical Sciences & Research, Sharda University, Greater Noida (Uttar Pradesh), India
Abstract:   (1294 Views)
Introduction: Lower respiratory tract infections (LRTIs) are a common global health problem, and antibiotic resistance remains a significant concern for doctors. This study aimed to determine the prevalence of antibiotic resistance among bacterial pathogens isolated from bronchoalveolar lavage (BAL) fluid at a tertiary care center in Western Uttar Pradesh. Methods: A cross-sectional study was conducted from January 2021 to June 2022, in which BAL fluid samples were collected from patients attending the tertiary care center. The samples were processed for bacterial culture and antimicrobial susceptibility testing. Results: Out of 112 BAL samples cultured, 84 showed growths of bacterial pathogens, with 82 (97.6%) being Gram-negative bacteria and 29 (35%) of these being extended-spectrum beta-lactamase (ESBL) producers. The percentage of multiple drug-resistant (MDR) isolates was 77.38% (65/84). The Gram-negative isolates were most sensitive to imipenem, followed by ciprofloxacin, amikacin, and tetracycline. Cephalosporins and piperacillin-tazobactam showed a high resistance pattern to these bacteria. The Gram-positive isolates were susceptible to linezolid and vancomycin. Conclusion: The high prevalence of ESBL-producing and MDR isolates in BAL samples highlights the need for the prudent administration of antibiotics and the creation of local antibiograms to guide empirical therapy. This study provides valuable information on the antimicrobial susceptibility patterns of bacterial pathogens causing LRTIs, which can aid in developing effective treatment strategies.
Full-Text [PDF 986 kb]   (554 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2023/02/6 | Accepted: 2023/06/11 | Published: 2023/07/18

References
1. Pant S, Bhusal K R, Manandhar S. Microbiology of lower respiratory tract infection in workers of garment industry of Kathmandu. J Col Med Sci. 2015; 10 (3): 14-22. [DOI:10.3126/jcmsn.v10i3.12772]
2. Thomas A M, Jayaprakash C, Amma GMR. The pattern of bacterial pathogens and their antibiotic susceptibility profile from lower respiratory tract specimens in a rural tertiary care centre. J Evolution Med Dent Sci. 2016; 5 (40): 2470-6. [DOI:10.14260/jemds/2016/576]
3. Egbe CA, Ndiokwre1 C, Omoregie R. Microbiology of Lower Respiratory Tract Infections in Benin City, Nigeria. Malaysian J Med Sci. 2011; 18 (2): 27-31.
4. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular epidemiology and risk factors of ventilator-associated pneumonia infection caused by carbapenem-resistant enterobacteriaceae. Front Pharmacol. 2019; 10: 262. [DOI:10.3389/fphar.2019.00262] [PMID] [PMCID]
5. Cillóniz C, Dominedò C, Torres A. Multidrug resistant gram-negative bacteria in community-acquired pneumonia. Crit Care. 2019; 23 (1): 79. [DOI:10.1186/s13054-019-2371-3] [PMID] [PMCID]
6. Sader HS, Castanheira M, Mendes RE, Flamm RK. Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015-17). J Antimicrob Chemother. 2018; 73 (11): 3053-9. [DOI:10.1093/jac/dky279] [PMID]
7. Rouby JJ, Sole-Lleonart C, Rello J. Ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: understanding nebulization of aminoglycosides and colistin. Intensive Care Med. 2020; 46 (4): 766-70. https://doi.org/10.1007/s00134-019-05890-w [DOI:10.1007/s00134-020-05986-8] [PMID] [PMCID]
8. Kidd JM, Kuti JL, Nicolau DP. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria. Expert Opin Pharmacother. 2018; 19 (4): 397-408. [DOI:10.1080/14656566.2018.1438408] [PMID]
9. Bush K. Is it important to identify extended-spectrum betalactamase-producing isolates? Eur J Clin Microbiol Infect Dis. 1996; 15: 361-4. [DOI:10.1007/BF01690090] [PMID]
10. Sarwat T, Rastogi V, Rashid M, Chander Y. Bacteriological profile of hospital acquired infections with multidrug resistance burden and extended spectrum beta lactamase prevalence. Int J Curr Microbiol Appl Sci. 2018; 7 (03): 988-94. [DOI:10.20546/ijcmas.2018.703.117]
11. Regha IR, Sulekha B. Bacteriological profile and antibiotic susceptibility patterns of lower respiratory tract infections in a tertiary care hospital, Central Kerala. IP Int J Med Microbiol Trop Dis 2018; 4 (4): 186-90 [DOI:10.18231/2581-4761.2018.0040]
12. Meyer KC. Bronchoalveolar lavage as a diagnostic tool. Semin Respir Crit Care Med. 2007; 28 (5): 546-60. [DOI:10.1055/s-2007-991527] [PMID]
13. Mackie and McCartney Practical Medical Microbiology, Tests for the identification of Bacteria, 14th Edition, Delhi: Elsevier Publication 2006: 131-508
14. CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-Fourth Informational Supplement CLSI: Document M100-S28. Wayne, PA, 2020
15. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18 (3): 268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
16. Afshari A, Pagani L, Harbarth S. Year in review 2011: Critical care- infection. Crit Care. 2012; 16 (6): 1-8. [DOI:10.1186/cc11421] [PMCID]
17. Hunter JD. Ventilator associated pneumonia. BMJ. 2012; 344 (may29 1): e3325. [DOI:10.1136/bmj.e3325] [PMID]
18. Eybpoosh S, Eshrati B. Nosocomial infection surveillance system in Iran: structures, processes and achievements. Iran J Epidemiol. 2019; 15 (1): 105-15.
19. Thananki, R., K.N, R., Unguturu, S. Bacteriological Analysis of Broncho Alveolar Wash of Patients with Suspected Pneumonia Cases. Int J Med Sci Clin Invent. 2018; 5 (11): 4178-81. [DOI:10.18535/ijmsci/v5i11.06]
20. Padmaja N, Rao V. Bacteriological profile and antibiogram of bronchoalveolar lavage fluid from patients with respiratory tract infections at a tertiary care Hospital. Indian J Microbiol Res. 2021; 8 (2): 119-22. [DOI:10.18231/j.ijmr.2021.023]
21. Baishali D, Dina R. Bacteriology of chronic respiratory diseases in a tertiary care hospital in Assam. Int J Health Res Med Leg Pract. 2020; 6 (2). [DOI:10.31741/ijhrmlp.v6.i2.2020.7]
22. Adhikari S, Regmi RS, Pandey S, Paudel P, Neupane N, Chalise S, et al. Bacterial etiology of bronchoalveolar Lavage fluid in tertiary care patients and antibiogram of the isolates. J Inst Sci Technol. 2021; 26 (1): 99-106. [DOI:10.3126/jist.v26i1.37833]
23. Rajasekhar T, Anuradha K, Suhasini T, Lakshmi V. The role of quantitative cultures of non-bronchoscopic samples in ventilator associated pneumonia. Indian J Med Microbiol. 2006; 24 (2): 107-13. https://doi.org/10.4103/0255-0857.25226 [DOI:10.1016/S0255-0857(21)02408-7] [PMID]
24. Afify MH, Shaheen EA, El-Dahdouh SS, El-Feky HM. Comparison between bronchoscopic BAL and non-bronchoscopic BAL in patients with VAP. Egypt J Chest Dis Tuberc. 2016; 65 (1): 113-9. [DOI:10.1016/j.ejcdt.2015.08.001]
25. Vivek KU, Kumar N. Microbiological profile of bronchoalveolar lavage fluid in patients with chronic respiratory diseases: a tertiary care hospital study. Int J Med Res Rev. 2016; 4: 330-4. [DOI:10.17511/ijmrr.2016.i03.08]
26. Sowmya, Bhat S, Saralaya V. Spectrum of bacteria isolated from bronchoalveolar lavage in a tertiary care centre. J Evol Med Dent Sci. 2014; 3 (28): 7950-4. [DOI:10.14260/jemds/2014/2995]
27. Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019; 8 (1): 39. [DOI:10.1186/s13756-019-0488-4] [PMID] [PMCID]
28. Veena Kumari HB, Agarathna SN, Chandramuki A. Antimicrobial resistance pattern among Aerobic gram negative bacilli of Lower Respiratory Tract Specimens of Intensive Care Unit in a Neuro centre. Indian J Chest Allied Dis. 2007; 49: 19-22.
29. Sofianou DC, Constandinidis TC, Yannacou M, Anastasiou H, Sofianos E. Analysis of risk factors for Ventilator associated pneumonia in a multidisciplinary intensive care unit. Eur J Clin Microbiol Infect Dis. 2000; 19: 460-3. [DOI:10.1007/s100960000236] [PMID]
30. Olugbue V, Onuoha S. Prevalence and antibiotic sensitivity of bacterial agents involved in lower respiratory tract infections. Int J Biol Chem Sci. 2011; 5 (2): 774-81. [DOI:10.4314/ijbcs.v5i2.72151]
31. Siraj SM, Ali S, Wondafrash B. Extended- spectrum β -lactamase production in Klebsiella pneumoniae and Escherichia coli at Jimma University specialized hospital, south-west, Ethiopia. Mol Microbiol Res. 2015; 5 (1): 1-9.
32. Mulualem Y, Kasa T, Mekonnen ZSS. Occurrence of extended spectrum beta-lactamases in multidrug resistant Escherichia coli isolated from a clinical setting in Jimma university specialized hospital, Jimma, Southwest Ethiopia. East Afr J Public Heal. 2012; 9 (2): 58-61
33. Seid J, Asrat D. Occurrence of extended spectrum β-lactamase enzymes in clinical isolates of Klebsiella species from Harar region, eastern Ethiopia. Acta Trop. 2005; 95 (2): 143-8. [DOI:10.1016/j.actatropica.2005.05.009] [PMID]
34. Mulisa G, Selassie L, Jarso G, Shiferew T, Zewdu A, Abebe W, et al. Prevalence of extended Spectrum Beta-lactamase producing Enterobacteriaceae : a cross sectional study at Adama hospital, Adama, Ethiopia. J Emerg Infect Dis. 2016; 1 (1): 1-6. [DOI:10.4172/2472-4998.1000102]
35. Eybpoosh S, Mostaan S, Gouya MM, Masoumi-Asl H, Owlia P, Eshrati B, et al. Frequency of five Escherichia Coli pathotypes in Iranian adults and children with acute diarrhea. PLoS One. 2021; 16 (2): e0245470. [DOI:10.1371/journal.pone.0245470] [PMID] [PMCID]
36. Ouedraogo A-S, Sanou M, Kissou A, Sanou S, Solaré H, Kaboré F, et al. High prevalence of extended-spectrum ß-lactamase producing enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect Dis. 2016; 16 (1): 326. [DOI:10.1186/s12879-016-1655-3] [PMID] [PMCID]
37. Rao SP, Rama PS, Gurushanthappa V, Manipura R, Srinivasan K. Extended-Spectrum Beta-lactamases producing Escherichia coli and Klebsiella pneumoniae: a multi-centric study across Karnataka. J Lab Physicians. 2014; 6 (1): 7-13. [DOI:10.4103/0974-2727.129083] [PMID] [PMCID]
38. Shashwati N, Kiran T DA. Study of extended-spectrum β-lactamase producing Enterobacteriaceae and antibiotic coresistance in a tertiary care teaching hospital. J Nat Sci Biol Med. 2014; 5 (1): 30. [DOI:10.4103/0976-9668.127280] [PMID] [PMCID]
39. Goel V, Hogade SA, Karadesai SG. Prevalence of extended-spectrum betalactamases, AmpC beta-lactamase, and metallo-beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii in an Intensive Care Unit in a tertiary care hospital. J Sci Soc. 2013; 40: 28-31. [DOI:10.4103/0974-5009.109691]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.