Volume 11, Issue 3 (9-2023)                   JoMMID 2023, 11(3): 141-147 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Y. Tula M, Iyoha O, Elisha R, Filgona J, S. Aziegbemhin A. Phenotypic Detection of Extended-Spectrum β-lactamases (ESBLs) and Aminopenicillin Cephalosporinase (AmpC)-Producing Bacterial Isolates from Surfaces of Hospital Fomites and Hands of Healthcare Workers. JoMMID 2023; 11 (3) :141-147
URL: http://jommid.pasteur.ac.ir/article-1-514-en.html
Department of Biological Science Technology, Federal Polytechnic Mubi, Adamawa State, Nigeria
Abstract:   (772 Views)
Introduction: The hospital environment can significantly contribute to the spreading of bacterial isolates that pose a risk to public health. In this study, we analyzed bacteria found on hospital fomites and the hands of healthcare workers to determine the presence of resistant enzymes such as ESBLs and AmpC. Methods: We studied 100 samples collected from hospital fomites - including the hands of healthcare workers - for bacterial growth, which were subsequently identified using standard procedures. Standard disk methods were used to screen Gram-negative bacteria (GNB) for ESBL and AmpC production, including presumptive and confirmatory testing. Results: 46 (46.0%) Gram-negative bacteria were isolated from all sampling sites, including a preponderance of Pseudomonas aeruginosa and Escherichia coli. Of the 46 GNBs, 31 (67.4%) and 27 (58.7%) were resistant to ceftazidime and ceftriaxone, respectively. The double disk synergy test (DDST) showed ESBL in 34 (73.1%) of the isolates, with the highest prevalence in E. coli (32.3%) and P. aeruginosa (26.5%). These isolates were primarily associated with patients’ bedding (32.4%), tablets (26.5%), and sinks (20.6%), although there was no statistical difference (P=0.998). Presumptive AmpC production was 100% in isolates of K. pneumoniae, C. diversus, Shigella spp., and S. marcescens but variable in other isolates. The combined disk test (CDT) showed that 29 (63.0%) isolates were AmpC-producing GNB, with the highest prevalence in E. coli (34.5%). Conclusion: The isolation of bacteria with these types of resistance from the surfaces of hospital fomites may negatively impact the quality of healthcare delivery.
Full-Text [PDF 954 kb]   (220 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2022/12/4 | Accepted: 2023/09/10 | Published: 2023/11/11

1. Neuchauser MM, Weinstan RA, Rydman IR, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among Gram negative Bacilli in US intensive care units: implications for flouroquinolones use. J Amer Med Assoc. 2003; 289 (7): 885-8. [DOI:10.1001/jama.289.7.885] [PMID]
2. Paterson DL, Ko WC, Goossens H. Antibiotic therapy for Klebsiella pneumoniae bacteremia; Implication of production of extended-spectrum β-lactamases. J Clin Microbiol. 2004; 39 (5): 50-7. [DOI:10.1086/420816] [PMID]
3. Drawz SM, Bonomo RA. Three decades of Bet-lactamase inhibitors. Clin Microbiol Rev. 2010; 23 (1): 160-201. [DOI:10.1128/CMR.00037-09] [PMID] [PMCID]
4. Teethaisong Y, Eumkeb G, Chumnarnsilpa S, Autarkoo N, Hobson J, Nakouti I, et al. Phenotypic detection of AmpC Beta-lactamases, extended-spectrum â - lactamases, and Metallo beta-lactamases in Enterobacteriaceae using a resazurin microtitre assay with inhibitor-based methods. J Med Microbiol. 2016; 65 (10): 1079-87. [DOI:10.1099/jmm.0.000326] [PMID]
5. Braide W, Madu LC, Adeleye SA, Korie M C, Akobondu CI. Prevalence of Extended Spectrum Beta Lactamase Producing Escherichia coli and Pseudomonas aeruginosa Isolated from Clinical samples. Int J Sci. 2018; 7 (2): 89-93. [DOI:10.18483/ijSci.1556]
6. Poulou A, Grivakou E, Vrioni G, Koumaki V, Pittaras T, Pournaras S, et al. Modified CLSI Extended-Spectrum β-Lactamase (ESBL) Confirmatory Test for Phenotypic Detection of ESBLs among Enterobacteriaceae Producing various Beta-lactamases. J Clin Microbiol. 2014; 52 (5): 1483-9. [DOI:10.1128/JCM.03361-13] [PMID] [PMCID]
7. Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative Bacteria. Ann Rev Microbiol. 2011; 65: 455-78. [DOI:10.1146/annurev-micro-090110-102911] [PMID]
8. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008; 8 (3): 159-66. [DOI:10.1016/S1473-3099(08)70041-0] [PMID]
9. Nwosu IL, Amadi ES, Nwanyanwu CE, Chikwendu IC, Madu CL. The prevalence of extended-spectrum beta-lactamases (ESBLs) among Escherichia coli and Klebsiella species urinary isolates from Abia State University Teaching Hospital (ABSUTH) Aba, Abia State. Int J Microbiol Mycol. 2014; 2 (3): 20-8.
10. Tula MY, Enabulele OI, Ophori EO, Aziegbemhin SA, Iyoha O, Filgona J. Phenotypic and molecular detection of multi-drug resistant Enterobacteriaceae species from water sources in Adamawa-North senatorial zone, Nigeria. Dysona-Life Sci. 2022; 3 (2): 57-68. [DOI:10.18332/pht/158012]
11. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed. CLSI supplement M100; USA: Wayne PA, 2017: Clinical and Laboratory Standards Institute.
12. Iroha IR, Egwu E, Afiukwa FN, Moses IB, Nwuzo AC, Ejikeugwu PC, et al. Phenotypic Screening for AmpC and Extended-Spectrum Beta-Lactamase (ESBL) Producing Pseudomonas aeruginosa in Clinical Samples collected from Federal Teaching Hospital Abakaliki (FETHA I and II). Int J Pharma Res BioSci. 2016; 5 (1): 9-24.
13. Ejikeugwu C, Esimone C, Iroha I, Ugwu C, Ezeador C, Duru C, et al. Phenotypic Detection of AmpC Beta-Lactamase among Anal Pseudomonas aeruginosa Isolates in a Nigerian Abattoir. Arch Clin Microbiol. 2016; 7 (2): 1-6.
14. El-Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F. Therapies for multidrug-resistant and extensively drug-resistant non-fermenting Gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted therapy. Expert Rev Anti-infect Ther. 2018; 16 (2): 89-110. [DOI:10.1080/14787210.2018.1425139] [PMID] [PMCID]
15. Silva de Barros JF, da Silva IC, Medeiros SM, Florenço AA, Filho JJ, Correia do Nascimento WR, et al. Phenotypic identification of bacteria of the family Enterobacteriaceae with resistance profile on inanimate surfaces in a University Hospital. Res Soc Dev. 2021; 10 (11): 1-11. [DOI:10.33448/rsd-v10i11.18508]
16. Manel D, Abdelbasset M, Houria C. Prevalence and characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae isolated from hospital environments. Asian J Microbiol Biotechnol Environ Sci. 2014; 16 (2): 19-27.
17. Marques LA, Silva FF, Silva NB, Faria GO, Alves PG, Bessa MA. The surface screening of neonatal intensive care unit for multidrug-resistant Gram-negative bacteria. Int J Dev Res. 2019; 9 (9): 29928-31.
18. Lago A, Fuentefria SR, Fuentefria DB. Enterobactérias produtoras de ESBL em Passo Fundo, Estado do Rio Grande do Sul, Brasil. Revista Socie Brasi Med Trop. 2010; 43: 430-4. [DOI:10.1590/S0037-86822010000400019] [PMID]
19. Silva KC, Lincopan N. Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J Bras Patolol Med Laborat. 2012; 48: 91-9. [DOI:10.1590/S1676-24442012000200004]
20. Valverde A, Grill F, Coque TM, Pintado V, Baquero F, Canton R, et al. High rate of intestinal colonization with extended-spectrum-beta-lactamase-producing organisms in household contacts of infected community patients. J Clin Microbiol. 2008; 46 (8): 2796-9. [DOI:10.1128/JCM.01008-08] [PMID] [PMCID]
21. Kaier K, Frank U, Hagist C, Conrad A, Meyer E. The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum β-lactamase producing strains: A time-series analysis. J Antimicrob Chemother. 2009; 63 (3): 609-14. [DOI:10.1093/jac/dkn534] [PMID]
22. Malnick S, Bardenstein R, Huszar M, Gabbay J, Borkow G. Pyjamas and Sheets as a Potential Source of Nosocomial Pathogens. J Hosp Infect. 2008; 70 (1): 89-92. [DOI:10.1016/j.jhin.2008.05.021] [PMID]
23. Hooker EA, Allen S, Gray L, Kaufman C. A randomized trial to evaluate a launderable bed. Antimicrob Res Infect Contr. 2012; 1 (1): 27. [DOI:10.1186/2047-2994-1-27] [PMID] [PMCID]
24. Pinon A, Gachet J, Alexandre V, Decherf S, Vialette M. Microbiological Contamination of Bed Linen and Staff Uniforms in a Hospital. Adv Microbiol. 2013; 3 (7): 515-9. [DOI:10.4236/aim.2013.37069]
25. Silva-Sanchez J, Garza-Ramos JU, Reyna-Flores F, Sanchez-Perez A, Rojas-Moreno T. Extended-spectrum β-lactamase-producing Enterobacteriaceae causing nosocomial infections in Mexico. A retrospective and multicenter study. Arch Med Res. 2011; 42 (2): 156-62. [DOI:10.1016/j.arcmed.2011.02.004] [PMID]
26. Udeze AO, Adeyemi AT, Adeniji FO, Nwanze JC, Onoh C, Okerentubga PO, et al. Plasmid-mediated ampicillin-resistant bacteria isolates from the University of Ilorin Health Centre. New York Sci J. 2012; 5 (4): 56-63.
27. Hammuel C, Jatau ED, Whong CM. Prevalence and Antibiogram Pattern of Some Nosocomial Pathogens Isolated from Hospital Environment in Zaria, Nigeria. Aceh Int J Sci Tech. 2014; 3 (3): 131-9. [DOI:10.13170/aijst.3.3.1593]
28. Al Laham NA. Distribution and antimicrobial resistance pattern of bacteria isolated from operation theaters at Gaza strip. J Al Azhar Uni-Gaza (Nat Sci). 2012; 14 (1): 19-34.
29. Nurain AM, Bilal NE, Ibrahim ME. The frequency and antimicrobial resistance patterns of nosocomial pathogens recovered from cancer patients and hospital environments. Asian Pac J Trop Biomed. 2015; 5 (12): 1055-9. [DOI:10.1016/j.apjtb.2015.09.015]
30. Engda T, Moges F, Gelaw A, Eshete S, Mekonnen F. Prevalence and antimicrobial susceptibility patterns of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the University of Gondar Referral Hospital environments northwest Ethiopia. BMC Res Notes. 2018; 11 (1): 335. [DOI:10.1186/s13104-018-3443-1] [PMID] [PMCID]
31. Mbanga J, Sibanda A, Rubayah S, Buwerimwe F, Mambodza K. Multi-Drug Resistant (MDR) Bacterial Isolates on Close Contact Surfaces and Health Care Workers in Intensive Care Units of a Tertiary Hospital in Bulawayo, Zimbabwe. J Adv Med Med Res. 2018; 27 (2): 1-15. [DOI:10.9734/JAMMR/2018/42764]
32. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017; 215 (Suppl_1): 28-36. [DOI:10.1093/infdis/jiw282] [PMID] [PMCID]
33. Puzniak L, DePestel DD, Srinivasan A, Ye G, Murray J, Merchant S. A combination antibiogram evaluation for Pseudomonas aeruginosa in respiratory and blood sources from intensive care unit (ICU) and non-ICU settings in US hospitals. Antimicrob Agents Chemother. 2019; 63 (4): e02564-18. [DOI:10.1128/AAC.02564-18] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.