Volume 11, Issue 1 (3-2023)                   JoMMID 2023, 11(1): 41-48 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

SarveAhrabi Y, Rostamiyan O, Nejati Khoei S. Podophyllotoxin, Deoxypodophyllotoxin and Ursolic Acid as Potential Inhibitors of tcpA, ompW, and ctxB Genes in Vibrio cholerae: An in-Silico Study. JoMMID 2023; 11 (1) :41-48
URL: http://jommid.pasteur.ac.ir/article-1-496-en.html
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:   (857 Views)
Introduction: Cholera is a highly contagious disease that causes severe diarrhea and dehydration. This study investigated podophyllotoxin, deoxypodophyllotoxin, and ursolic acid as inhibitors of tcpA, ompW, and ctxB genes in Vibrio cholerae. Methods: We obtained the crystallized structure of podophyllotoxin, deoxypodophyllotoxin, and ursolic acid from the PubChem database for use as a ligand. The mm2 method in Chem3D v20.1.1.125 was used to optimize the structure of the ligands. We used AutodackVina v.1.2.0 to evaluate the ligands as inhibitors against the active site of the tcpA, ompW, and ctxB proteins. The output results were analyzed and assessed by BIOVIA Discovery Studio 2016 V16.1.0 X64. Results: The reported affinities ranged from -6.8 and -8.7 kcal/mol. The highest diversity of links was found in tcpA and ctxB. Hydrogen bonds were established with Threonine (91, 111), Glycine (113, 114, 94), and Alanine (92) of tcpA, indicating the effectiveness of ligands against tcpA. The ligands podophyllotoxin, deoxypodophyllotoxin, and ursolic acid showed a variety of hydrogen bonds against ompW and ctxB, respectively, with Arginine, Isoleucine, Histidine, Glycine, and Glutamine. These results demonstrate the excellent inhibitory effects of the ligands against Vibrio cholerae. Conclusion: Vibrio cholerae plays a crucial role in causing pandemic cholera in humans. The predicted conformations of the ligands in this study showed that podophyllotoxin and deoxypodophyllotoxin have higher inhibitory potential than ursolic acid. Therefore, podophyllotoxin and deoxypodophyllotoxin can be potential agents for further research in developing Anti-Vibrio cholerae drugs.
Full-Text [PDF 1178 kb]   (268 Downloads)    
Type of Study: Original article | Subject: Microbial pathogenesis
Received: 2022/08/13 | Accepted: 2023/04/18 | Published: 2023/05/20

References
1. Hsiao A, Hall AH, Mogasale V, Quentin W. The health economics of cholera: A systematic review. Vaccine. 2018; 36 (30): 4404-24. [DOI:10.1016/j.vaccine.2018.05.120]
2. Lekshmi N, Joseph I, Ramamurthy T, Thomas S. Changing facades of Vibrio cholerae: An enigma in the epidemiology of cholera. Indian J Med Res. 2018; 147 (2): 133-41. [DOI:10.4103/ijmr.IJMR_280_17]
3. Ramamurthy T, Mutreja A, Weill FX, Das B, Ghosh A, Nair GB. Revisiting the global epidemiology of cholera in conjunction with the genomics of Vibrio cholerae. Front Public Health. 2019; 23 (7): 203. [DOI:10.3389/fpubh.2019.00203]
4. Islam MS, Zaman MH, Islam MS, Ahmed N, Clemens JD. Environmental reservoirs of Vibrio cholerae. Vaccine. 2020; 29 (38): 52-62. [DOI:10.1016/j.vaccine.2019.06.033]
5. Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control. 2016; 5: 23. [DOI:10.1186/s13756-016-0122-7]
6. Umar M, Kambai J, Mohammed IB, Oko JO, Obafemi AA, Murtala I, et al. Bacteriological quality assessment and antibiogram profile of bacteria associated with sachet drinking water sold at Zaria, Northern Nigeria. Int J Infect Dis. 2019; 2 (2): 1-13. [DOI:10.9734/ijpr/2019/v2i230067]
7. Waghmare PH, Rathod PG, Ingole KV, Khalid N, Shaikh SP. Changing trends in the epidemiology of Vibrio cholerae in an outbreak of 2013 in Solapur, Maharashtra. Indian J Microbiol. 2016; 3 (2): 194-6. [DOI:10.5958/2394-5478.2016.00044.3]
8. Taheri F, Nazarian S, Ahmadi TS, Gargari SL. Protective effects of egg yolk immunoglobulins (IgYs) developed against recombinant immunogens CtxB, OmpW and TcpA on infant mice infected with Vibrio cholerae. Int Immunopharmacol. 2020; 1 (89): 107054. [DOI:10.1016/j.intimp.2020.107054]
9. Zareitaher T, Ahmadi TS, Gargari SL. Immunogenic efficacy of DNA and protein-based vaccine from a chimeric gene consisting OmpW, TcpA and CtxB, of Vibrio cholerae. Immunobiology. 2022; 227 (2): 152190. [DOI:10.1016/j.imbio.2022.152190]
10. Parmryd I, Day CA, Kenworthy AK. Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem. 2015; (57): 135-45. [DOI:10.1042/bse0570135]
11. Barker D. Lignans. Molecules. 2019; 24 (7): 1424. [DOI:10.3390/molecules24071424]
12. Rocha MP, Campana PR, Scoaris DD, Almeida VL, Lopes JC, Shaw JM, et al. Combined in Vitro Studies and in Silico Target Fishing for the Evaluation of the Biological Activities of Diphylleia cymosa and Podophyllum hexandrum. Molecules. 2018; 23 (12): 3303. [DOI:10.3390/molecules23123303]
13. Umesha B, Basavaraju YB, Mahendra C. Synthesis and biological screening of pyrazole moiety containing analogs of podophyllotoxin. Med Chem. 2015; 24 (1): 142-51. [DOI:10.1007/s00044-014-1100-3]
14. Sun D, Gao X, Wang Q, Krausz KW, Fang Z, Zhang Y, et al. Metabolic map of the antiviral drug podophyllotoxin provides insights into hepatotoxicity. Xenobiotica. 2021; 51 (9): 47-59. [DOI:10.1080/00498254.2021.1961920]
15. Ardalani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J Phytomedicine. 2017; 7 (4): 285-94.
16. Oloyede HO, Ajiboye HO, Salawu MO, Ajiboye TO. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. Microb Pathog. 2017; 111: 338-44. [DOI:10.1016/j.micpath.2017.08.012]
17. Shu C, Zhao H, Jiao W, Liu B, Cao J, Jiang W. Antifungal efficacy of ursolic acid in control of Alternaria alternata causing black spot rot on apple fruit and possible mechanisms involved. Scientia Horticulturae. 2019; 256: 108636. [DOI:10.1016/j.scienta.2019.108636]
18. Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: Addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev. 2019; 8512048. [DOI:10.1155/2019/8512048]
19. Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int J Mol Sci. 2020; 21 (16): 5920. [DOI:10.3390/ijms21165920]
20. Tang Q, Liu Y, Li T, Yang X, Zheng G, Chen H, et al. A novel co-drug of aspirin and ursolic acid interrupts adhesion, invasion and migration of cancer cells to vascular endothelium via regulating EMT and EGFR-mediated signaling pathways: multiple targets for cancer metastasis prevention and treatment. Oncotarget. 2016; 7 (45): 73114. [DOI:10.18632/oncotarget.12232]
21. Zarrabi Ahrabi N, SarveAhrabi Y, Ebrahimi MR, Hashem Zadeh Z, Sharifiyan A. Anti-Helicobacter pylori Potential of Podophyllotoxin: In Silico Study. Int J Med Microbiol. 2022; 12 (1): 32-42.
22. Morris GM, Lim-Wilby M. Molecular docking. Mol Simul. 2008; 443: 365-82. [DOI:10.1007/978-1-59745-177-2_19]
23. Feleke Y, Legesse A, Abebe M. Prevalence of Diarrhea, Feeding Practice, and Associated Factors among Children under Five Years in Bereh District, Oromia, Ethiopia. Infect Dis Obstet Gynecol. 2022; 4139648. [DOI:10.1155/2022/4139648]
24. Yuan XH, Li YM, Vaziri AZ, Kaviar VH, Jin Y, Jin Y, et al. Global status of antimicrobial resistance among environmental isolates of Vibrio cholerae O1/O139: a systematic review and meta-analysis. Antimicrob Resist Infect. 2022; 11 (1): 1-11. [DOI:10.1186/s13756-022-01100-3]
25. Danielewicz N, Dai W, Rosato F, Webb ME, Striedner G, Römer W, et al. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins. 2022; 14 (6): 396. [DOI:10.3390/toxins14060396]
26. Mouhib M, Chi CN. Solution nuclear magnetic resonance spectroscopy of bacterial outer membrane proteins in natively excreted vesicles using engineered Escherichia coli. Microbiologyopen. 2022; 11 (3): 1302. [DOI:10.1002/mbo3.1302]
27. García-Cañas V, Simó C, León C, Cifuentes A. Advances in Nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J Pharm Biomed Anal. 2010; 51 (2): 290-304. [DOI:10.1016/j.jpba.2009.04.019]
28. Guo K, Tong C, Fu Q, Xu J, Shi S, Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J Pharm Biomed Anal. 2019; 170: 153-160. [DOI:10.1016/j.jpba.2019.03.044]
29. Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015; 11 (8): 982-91. [DOI:10.7150/ijbs.12096]
30. Ragunathan A, Malathi K, Anbarasu A. MurB as a target in an alternative approach to tackle the Vibrio cholerae resistance using molecular docking and simulation study. J Cell Biochem. 2018; 119 (2): 1726-32. [DOI:10.1002/jcb.26333]
31. Perveen S, Chaudhary HS. In silico screening of antibacterial compounds from herbal sources against Vibrio cholerae. Pharmacogn Mag. 2015; 11 (4): 550-5. [DOI:10.4103/0973-1296.172960]
32. Sharavanan VJ, Sivaramakrishnan M, Kothandan R, Muthusamy S, Kandaswamy K. Molecular docking studies of phytochemicals from Leucas aspera targeting Escherichia coli and Bacillus subtilis subcellular proteins. Pharmacogn J. 2019; 11 (2): 278-85. [DOI:10.5530/pj.2019.11.43]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.