1. Hsiao A, Hall AH, Mogasale V, Quentin W. The health economics of cholera: A systematic review. Vaccine. 2018; 36 (30): 4404-24. [
DOI:10.1016/j.vaccine.2018.05.120]
2. Lekshmi N, Joseph I, Ramamurthy T, Thomas S. Changing facades of Vibrio cholerae: An enigma in the epidemiology of cholera. Indian J Med Res. 2018; 147 (2): 133-41. [
DOI:10.4103/ijmr.IJMR_280_17]
3. Ramamurthy T, Mutreja A, Weill FX, Das B, Ghosh A, Nair GB. Revisiting the global epidemiology of cholera in conjunction with the genomics of Vibrio cholerae. Front Public Health. 2019; 23 (7): 203. [
DOI:10.3389/fpubh.2019.00203]
4. Islam MS, Zaman MH, Islam MS, Ahmed N, Clemens JD. Environmental reservoirs of Vibrio cholerae. Vaccine. 2020; 29 (38): 52-62. [
DOI:10.1016/j.vaccine.2019.06.033]
5. Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control. 2016; 5: 23. [
DOI:10.1186/s13756-016-0122-7]
6. Umar M, Kambai J, Mohammed IB, Oko JO, Obafemi AA, Murtala I, et al. Bacteriological quality assessment and antibiogram profile of bacteria associated with sachet drinking water sold at Zaria, Northern Nigeria. Int J Infect Dis. 2019; 2 (2): 1-13. [
DOI:10.9734/ijpr/2019/v2i230067]
7. Waghmare PH, Rathod PG, Ingole KV, Khalid N, Shaikh SP. Changing trends in the epidemiology of Vibrio cholerae in an outbreak of 2013 in Solapur, Maharashtra. Indian J Microbiol. 2016; 3 (2): 194-6. [
DOI:10.5958/2394-5478.2016.00044.3]
8. Taheri F, Nazarian S, Ahmadi TS, Gargari SL. Protective effects of egg yolk immunoglobulins (IgYs) developed against recombinant immunogens CtxB, OmpW and TcpA on infant mice infected with Vibrio cholerae. Int Immunopharmacol. 2020; 1 (89): 107054. [
DOI:10.1016/j.intimp.2020.107054]
9. Zareitaher T, Ahmadi TS, Gargari SL. Immunogenic efficacy of DNA and protein-based vaccine from a chimeric gene consisting OmpW, TcpA and CtxB, of Vibrio cholerae. Immunobiology. 2022; 227 (2): 152190. [
DOI:10.1016/j.imbio.2022.152190]
10. Parmryd I, Day CA, Kenworthy AK. Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem. 2015; (57): 135-45. [
DOI:10.1042/bse0570135]
11. Barker D. Lignans. Molecules. 2019; 24 (7): 1424. [
DOI:10.3390/molecules24071424]
12. Rocha MP, Campana PR, Scoaris DD, Almeida VL, Lopes JC, Shaw JM, et al. Combined in Vitro Studies and in Silico Target Fishing for the Evaluation of the Biological Activities of Diphylleia cymosa and Podophyllum hexandrum. Molecules. 2018; 23 (12): 3303. [
DOI:10.3390/molecules23123303]
13. Umesha B, Basavaraju YB, Mahendra C. Synthesis and biological screening of pyrazole moiety containing analogs of podophyllotoxin. Med Chem. 2015; 24 (1): 142-51. [
DOI:10.1007/s00044-014-1100-3]
14. Sun D, Gao X, Wang Q, Krausz KW, Fang Z, Zhang Y, et al. Metabolic map of the antiviral drug podophyllotoxin provides insights into hepatotoxicity. Xenobiotica. 2021; 51 (9): 47-59. [
DOI:10.1080/00498254.2021.1961920]
15. Ardalani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J Phytomedicine. 2017; 7 (4): 285-94.
16. Oloyede HO, Ajiboye HO, Salawu MO, Ajiboye TO. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. Microb Pathog. 2017; 111: 338-44. [
DOI:10.1016/j.micpath.2017.08.012]
17. Shu C, Zhao H, Jiao W, Liu B, Cao J, Jiang W. Antifungal efficacy of ursolic acid in control of Alternaria alternata causing black spot rot on apple fruit and possible mechanisms involved. Scientia Horticulturae. 2019; 256: 108636. [
DOI:10.1016/j.scienta.2019.108636]
18. Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: Addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev. 2019; 8512048. [
DOI:10.1155/2019/8512048]
19. Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int J Mol Sci. 2020; 21 (16): 5920. [
DOI:10.3390/ijms21165920]
20. Tang Q, Liu Y, Li T, Yang X, Zheng G, Chen H, et al. A novel co-drug of aspirin and ursolic acid interrupts adhesion, invasion and migration of cancer cells to vascular endothelium via regulating EMT and EGFR-mediated signaling pathways: multiple targets for cancer metastasis prevention and treatment. Oncotarget. 2016; 7 (45): 73114. [
DOI:10.18632/oncotarget.12232]
21. Zarrabi Ahrabi N, SarveAhrabi Y, Ebrahimi MR, Hashem Zadeh Z, Sharifiyan A. Anti-Helicobacter pylori Potential of Podophyllotoxin: In Silico Study. Int J Med Microbiol. 2022; 12 (1): 32-42.
22. Morris GM, Lim-Wilby M. Molecular docking. Mol Simul. 2008; 443: 365-82. [
DOI:10.1007/978-1-59745-177-2_19]
23. Feleke Y, Legesse A, Abebe M. Prevalence of Diarrhea, Feeding Practice, and Associated Factors among Children under Five Years in Bereh District, Oromia, Ethiopia. Infect Dis Obstet Gynecol. 2022; 4139648. [
DOI:10.1155/2022/4139648]
24. Yuan XH, Li YM, Vaziri AZ, Kaviar VH, Jin Y, Jin Y, et al. Global status of antimicrobial resistance among environmental isolates of Vibrio cholerae O1/O139: a systematic review and meta-analysis. Antimicrob Resist Infect. 2022; 11 (1): 1-11. [
DOI:10.1186/s13756-022-01100-3]
25. Danielewicz N, Dai W, Rosato F, Webb ME, Striedner G, Römer W, et al. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins. 2022; 14 (6): 396. [
DOI:10.3390/toxins14060396]
26. Mouhib M, Chi CN. Solution nuclear magnetic resonance spectroscopy of bacterial outer membrane proteins in natively excreted vesicles using engineered Escherichia coli. Microbiologyopen. 2022; 11 (3): 1302. [
DOI:10.1002/mbo3.1302]
27. García-Cañas V, Simó C, León C, Cifuentes A. Advances in Nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J Pharm Biomed Anal. 2010; 51 (2): 290-304. [
DOI:10.1016/j.jpba.2009.04.019]
28. Guo K, Tong C, Fu Q, Xu J, Shi S, Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J Pharm Biomed Anal. 2019; 170: 153-160. [
DOI:10.1016/j.jpba.2019.03.044]
29. Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015; 11 (8): 982-91. [
DOI:10.7150/ijbs.12096]
30. Ragunathan A, Malathi K, Anbarasu A. MurB as a target in an alternative approach to tackle the Vibrio cholerae resistance using molecular docking and simulation study. J Cell Biochem. 2018; 119 (2): 1726-32. [
DOI:10.1002/jcb.26333]
31. Perveen S, Chaudhary HS. In silico screening of antibacterial compounds from herbal sources against Vibrio cholerae. Pharmacogn Mag. 2015; 11 (4): 550-5. [
DOI:10.4103/0973-1296.172960]
32. Sharavanan VJ, Sivaramakrishnan M, Kothandan R, Muthusamy S, Kandaswamy K. Molecular docking studies of phytochemicals from Leucas aspera targeting Escherichia coli and Bacillus subtilis subcellular proteins. Pharmacogn J. 2019; 11 (2): 278-85. [
DOI:10.5530/pj.2019.11.43]