Volume 11, Issue 1 (3-2023)                   JoMMID 2023, 11(1): 1-19 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadzadeh S, Sedighi M, Torkashvand A, Hashemzadeh P, Shafiei F, Torkashvand M et al . Pathological Effects of COVID-19 on Body Organs. JoMMID 2023; 11 (1) :1-19
URL: http://jommid.pasteur.ac.ir/article-1-475-en.html
Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran
Abstract:   (1518 Views)
The SARS-COV-2 virus is the cause of the 2020 pandemic that has infected and killed millions worldwide. While the upper respiratory tract cells are the primary targets of COVID-19, the virus can infiltrate other tissues and organs, leading to potentially serious complications. The new coronavirus primarily affects angiotensin II receptor and cytokine pathways, which can result in acute pulmonary inflammation, pulmonary edema, acute respiratory distress syndrome, vascular endothelial dysfunction, pulmonary embolism in the lungs, and cardiomyopathy, arrhythmia, heart failure, and intravenous thrombosis in the heart. COVID-19 infection can be associated with gastrointestinal symptoms such as diarrhea, vomiting, and abdominal pain. Also, reports of mild and transient liver damage, polyneuropathy, encephalitis, stroke, acute renal failure, hypocortisolism, and damage to the hypothalamus and pituitary system are available. COVID-19 can also be associated with skin symptoms such as rash, urticaria, maculopapular lesions, and vascular lesions such as chill blain, petechiae purpura, and scalpopathy. This narrative review evaluates the pathogenesis of novel coronavirus on body organs based on relevant published papers and reference books.

 
Full-Text [PDF 1239 kb]   (418 Downloads)    
Type of Study: Review article | Subject: Infectious diseases and public health
Received: 2022/06/12 | Accepted: 2023/05/10 | Published: 2023/05/20

References
1. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020; 9 (4): 920. [DOI:10.3390/cells9040920]
2. Organization WH. World Health Organization coronavirus disease 2019 (COVID-19) situation report.
3. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020; 12 (1): 1-6. [DOI:10.1038/s41368-020-0075-9]
4. Tavakoli A, Vahdat K, Keshavarz M. Novel coronavirus disease 2019 (COVID-19): an emerging infectious disease in the 21st century. ISMJ. 2020; 22 (6): 432-50. [DOI:10.29252/ismj.22.6.432]
5. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020; 382 (16): 1564-7. [DOI:10.1056/NEJMc2004973]
6. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020. [DOI:10.1056/NEJMoa2002032]
7. Gerami A, Dadgar S, Rakhshan V, Jannati P, Sobouti F. Displacement and force distribution of splinted and tilted mandibular anterior teeth under occlusal loads: an in silico 3D finite element analysis. Prog Orthod. 2016;17 (1): 16. [DOI:10.1186/s40510-016-0129-x]
8. Control CfD, Prevention. People who are at higher risk for severe illness, https://www.cdc.gov/ coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html, 2020.
9. Control CfD, Prevention. Symptoms of coronavirus. Available at:(Accessed April 21, 2020) https://www. cdc. gov/coronavirus/2019-ncov/symptoms-testing/symptoms. html View in Article. 2020.
10. Buja LM, Wolf D, Zhao B, Akkanti B, McDonald M, Lelenwa L, et al. Emerging Spectrum of Cardiopulmonary Pathology of the Coronavirus Disease 2019 (COVID-19): Report of three Autopsies from Houston, Texas and Review of Autopsy Findings from other United States Cities. Cardiovas Pathol. 2020; 48: 107233. [DOI:10.1016/j.carpath.2020.107233]
11. Bayarri-Olmos R, Johnsen LB, Idorn M, Reinert L-S, Rosbjerg A, Vang S, et al. The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice. Elife. 2021; 10: e70002. [DOI:10.7554/eLife.70002]
12. Natekar JP, Pathak H, Stone S, Kumari P, Sharma S, Auroni TT, et al. Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses. 2022; 14 (6): 1139. [DOI:10.3390/v14061139]
13. Al-Awwal N, Dweik F, Mahdi S, El-Dweik M, Anderson S-H. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens. 2022; 11 (3): 368. [DOI:10.3390/pathogens11030368]
14. Ortega M-A, García-Montero C, Fraile-Martinez O, Colet P, Baizhaxynova A, Mukhtarova K, et al. Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths. J Pers Med. 2022; 12 (6): 995. [DOI:10.3390/jpm12060995]
15. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer A-J, Ginn H-M, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021; 184 (9): 2348-61. [DOI:10.1016/j.cell.2021.02.037]
16. Pan T, Chen R, He X, Yuan Y, Deng X, Li R, et al. Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Ther. 2021; 6 (1): 420. [DOI:10.1038/s41392-021-00848-1]
17. Banho CA, Sacchetto L, Campos GRF, Bittar C, Possebon FS, Ullmann LS, et al. Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city. Commun Med. 2022; 2: 41. [DOI:10.1038/s43856-022-00108-5]
18. Saberiyan M, Karimi E, Khademi Z, Movahhed P, Safi A, Mehri‑Ghahfarrokhi A. SARS‑CoV‑2: phenotype, genotype, and characterization of different variants. Cell Mol Biol Lett. 2022; 27 (1): 50. [DOI:10.1186/s11658-022-00352-6]
19. Carroll T, Fox D, van Doremalen N, Ball E, Morris MK, Sotomayor-Gonzalez A, et al. The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLOS Pathog. 2022; 18 (2): e1009914. [DOI:10.1371/journal.ppat.1009914]
20. Khan A, Khan T, Ali S, Aftab S, Wang Y, Qiankun W, et al. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed Pharmacother. 2021; 143: 112176. [DOI:10.1016/j.biopha.2021.112176]
21. Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Pond SLK, et al. The biological and clinical significance of emerging SARS- CoV-2 variants. Nat Rev Genet. 2021; 22 (12): 757-73. [DOI:10.1038/s41576-021-00408-x]
22. Lekana-Douki SE, N'dilimabaka N, Levasseur A, Colson P, Andeko JC, Minko OZ, et al. Screening and Whole Genome Sequencing of SARS-CoV-2 Circulating During the First Three Waves of the COVID-19 Pandemic in Libreville and the Haut-Ogooué Province in Gabon. Front Med. 2022; 9: 877391. [DOI:10.3389/fmed.2022.877391]
23. Hwang Y-C, Lu R-M, Su S-C, Chiang P-Y, Ko S-H, Ke F-Y, et al. Monoclonal antibodies for COVID‑19 therapy and SARS‑CoV‑2 detection. J Biomed Sci. 2022; 29 (1): 1. [DOI:10.1186/s12929-021-00784-w]
24. Yang W, Greene SK, Peterson ER, Li W, Mathes R, Graf L, et al. Epidemiological characteristics of the B.1 1.526 SARS-CoV-2 variant. Sci Adv. 2022; 8 (4):eabm0300. [DOI:10.1126/sciadv.abm0300]
25. Yadav P, Mohandas S, Shete AM, Nyayanit DA, Gupta N, Patil DY, et al. SARS-CoV-2 Kappa Variant Shows Pathogenicity in a Syrian Hamster Model. Vector Borne Zoonotic Dis. 2022; 22 (5): 289-96. [DOI:10.1089/vbz.2021.0080]
26. Blann AD, Heitmar R. SARS-CoV-2 and COVID-19: A Narrative Review. Br J Biomed Sci. 2022; 79: 10426. [DOI:10.3389/bjbs.2022.10426]
27. Mohandas S, Yadav PD, Shete A, Nyayanit D, Sapkal G, Lole K, et al. SARS-CoV-2 Delta Variant Pathogenesis and Host Response in Syrian Hamsters. Viruses. 2021; 13 (9): 1773. [DOI:10.3390/v13091773]
28. Kumar A, Parashar R, Kumar S, Faiq MA, Kumari C, Kulandhasamy M, et al. Emerging SARS-CoV-2 variants can potentially break set epidemiological barriers in COVID-19, J Med Virol. 2022; 94 (4): 1300-14. [DOI:10.1002/jmv.27467]
29. Yadav P, Mohandas S, Sarkale P, Nyayanit D, Shete A, Sahay R, et al. Isolation of SARS-CoV-2 B.1.1.28.2 (P2) variant and pathogenicity comparison with D614G variant in hamster model. J Infect Public Health. 2022; 15 (2): 164-71. [DOI:10.1016/j.jiph.2021.12.009]
30. Nielsen MC, Machado RRG, Mitchell BM, McConnell AJ, Saada NI, Weaver SC, et al. A Comparison of Seegene Technologies Novaplex SARS-CoV-2 Variants I, II, and IV Assays with Spike Gene Sequencing for Detection of Known Severe Acute Respiratory Syndrome Coronavirus 2 Variants. J Mol Diagn. 2022; 24 (5): 455-61. [DOI:10.1016/j.jmoldx.2022.02.001]
31. Al-Awwal N, Dweik F, Mahdi S, El-Dweik M, Anderson SH. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens. 2022; 11 (3): 368. [DOI:10.3390/pathogens11030368]
32. Zhang J, Chen N, Zhao D, Zhang J, Hu Z, Tao Z. Clinical Characteristics of COVID-19 Patients Infected by the Omicron Variant of SARS-CoV-2. Front Med. 2022; 9: 912367. [DOI:10.3389/fmed.2022.912367]
33. Armando F, Beythien G, Kaiser FK, Allnoch L, Heydemann L, Rosiak M, et al. SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun. 2022; 13 (1): 3519. [DOI:10.1038/s41467-022-31200-y]
34. Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, et al. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J Clin Microbiol. 2020; 58 (5): e00187-20. [DOI:10.1128/JCM.00187-20]
35. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;1 2 (4): 372. [DOI:10.3390/v12040372]
36. Gosain R, Abdou Y, Singh A, Rana N, Puzanov I, Ernstoff MS. COVID-19 and cancer: a comprehensive review. Curr Oncol Rep. 2020; 22 (5): 53. [DOI:10.1007/s11912-020-00934-7]
37. Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 2019; 73: 529-57. [DOI:10.1146/annurev-micro-020518-115759]
38. Calabrò L, Peters S, Soria J-C, Di Giacomo AM, Barlesi F, Covre A, et al. Challenges in lung cancer therapy during the COVID-19 pandemic. Lancet Respir Med. 2020; 8 (6): 542-4. [DOI:10.1016/S2213-2600(20)30170-3]
39. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran Jr WJ, Wu Y-L, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017; 389 (10066): 299-311. [DOI:10.1016/S0140-6736(16)30958-8]
40. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. Am J Roentgenol. 2020; 214 (6): 1287-94. [DOI:10.2214/AJR.20.22975]
41. Yu PS, Chan JW, Lau RW, Ng CS. Screening-detected pure ground-glass opacities: malignant potential beyond conventional belief? Transl Lung Cancer Rese. 2020; 9 (3): 816-8. [DOI:10.21037/tlcr.2020.03.19]
42. Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation. 2020; 142 (5): 426-8. [DOI:10.1161/CIRCULATIONAHA.120.047049]
43. Milne S, Yang CX, Timens W, Bossé Y, Sin DD. SARS-CoV-2 receptor ACE2 gene expression and RAAS inhibitors. Lancet Respir Med. 2020; 8 (6): 50-1. [DOI:10.1016/S2213-2600(20)30224-1]
44. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020; 383 (2): 120-8. [DOI:10.1056/NEJMoa2015432]
45. Ullah W, Saeed R, Sarwar U, Patel R, Fischman DL. COVID-19 complicated by acute pulmonary embolism and right-sided heart failure. JACC Case Reports. 2020; 2 (9): 1379-82. [DOI:10.1016/j.jaccas.2020.04.008]
46. Gallo G, Sammarco G, Fulginiti S, Vescio G, COVIDSurg C. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lacent. 2020; 396 (10243): 27-38.
47. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID‐19. J Thromb Haemost. 2020; 18 (7): 1548-55. [DOI:10.1111/jth.14872]
48. Severin R, Arena R, Lavie CJ, Bond S, Phillips SA. Respiratory muscle performance screening for infectious disease management following COVID-19: a highly pressurized situation. Am J Med. 2020; 133 (9): 1025-32. [DOI:10.1016/j.amjmed.2020.04.003]
49. Paneroni M, Simonelli C, Saleri M, Bertacchini L, Venturelli M, Troosters T, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021; 100 (2): 105-9. [DOI:10.1097/PHM.0000000000001641]
50. Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004; 25 (6): 291-4. [DOI:10.1016/j.tips.2004.04.001]
51. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052-9. [DOI:10.1001/jama.2020.6775]
52. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (7): 811-8. [DOI:10.1001/jamacardio.2020.1017]
53. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708-20. [DOI:10.1056/NEJMoa2002032]
54. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054-62. [DOI:10.1016/S0140-6736(20)30566-3]
55. Vaduganathan M, Vardeny O, Michel T, McMurray JJ, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020; 382 (17): 1653-9. [DOI:10.1056/NEJMsr2005760]
56. Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999; 85 (7): 643-50. [DOI:10.1161/01.RES.85.7.643]
57. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int J Mol Sci. 2020; 21 (10): 3474. [DOI:10.3390/ijms21103474]
58. Zores F, Rebeaud ME. COVID and the renin-angiotensin system: are hypertension or its treatments deleterious? Front Cardiovasc Med. 2020; 7: 71. [DOI:10.3389/fcvm.2020.00071]
59. Fraga‐Silva RA, Sorg BS, Wankhede M, deDeugd C, Ferreira AJ, Jun Y, et al. ACE2 Activation Promotes Antithrombotic Activity. Mol Med. 2010; 16 (5-6): 210-5. [DOI:10.2119/molmed.2009.00160]
60. Olkowicz M, Chlopicki S, Smolenski RT. Perspectives for angiotensin profiling with liquid chromatography/mass spectrometry to evaluate ACE/ACE2 balance in endothelial dysfunction and vascular pathologies. Pharmacol Rep. 2015; 67 (4): 778-85. [DOI:10.1016/j.pharep.2015.03.017]
61. Epelman S, Tang WW, Chen SY, Van Lente F, Francis GS, Sen S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol. 2008; 52 (9): 750-4. [DOI:10.1016/j.jacc.2008.02.088]
62. Oudit GY, Pfeffer MA. Plasma angiotensin-converting enzyme 2: novel biomarker in heart failure with implications for COVID-19. Eur Heart J. 2020; 41 (19): 1818-20. [DOI:10.1093/eurheartj/ehaa414]
63. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586-90. [DOI:10.1007/s00134-020-05985-9]
64. Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. 2020; 9 (1): 313-9. [DOI:10.1080/22221751.2020.1725399]
65. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; 27 (3): 325-8. [DOI:10.1016/j.chom.2020.02.001]
66. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020; 323 (11): 1061-9. [DOI:10.1001/jama.2020.1585]
67. Zheng Y, Ma Y, Zhang J, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17 (5): 259-260. [DOI:10.1038/s41569-020-0360-5]
68. Pellicori P, Zhang J, Cuthbert J, Urbinati A, Shah P, Kazmi S, et al. High-sensitivity C-reactive protein in chronic heart failure: patient characteristics, phenotypes, and mode of death. Cardiovasc Res. 2020; 116 (1): 91-100. [DOI:10.1093/cvr/cvz198]
69. Cooper Jr LT. Myocarditis. N Engl J Med. 2009; 360 (15): 1526-38. [DOI:10.1056/NEJMra0800028]
70. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39 (5): 405-7. [DOI:10.1016/j.healun.2020.03.012]
71. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 802-10. [DOI:10.1001/jamacardio.2020.0950]
72. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020; 323 (16): 1574-81. [DOI:10.1001/jama.2020.5394]
73. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (7): 819-24. [DOI:10.1001/jamacardio.2020.1096]
74. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. Jama. 2020; 323 (14): 1341-2. [DOI:10.1001/jama.2020.3151]
75. Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated troponin in patients with Coronavirus Disease 2019 (COVID-19): possible mechanisms. J Card Fail. 2020; 26 (6): 470-5. [DOI:10.1016/j.cardfail.2020.04.009]
76. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020; 395 (10235): 1516. [DOI:10.1016/S0140-6736(20)30912-0]
77. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID‐19. J Cardiovasc Electrophysiol. 2020;31 (5): 1003-8. [DOI:10.1111/jce.14479]
78. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J 2020; 42 (2): 206. [DOI:10.1093/eurheartj/ehaa190]
79. Lakkireddy DR, Chung MK, Gopinathannair R, Patton KK, Gluckman TJ, Turagam M, et al. Guidance for Cardiac Electrophysiology During the COVID-19 Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Circulation. 2020; 141 (21): e823-e31. [DOI:10.1161/CIRCULATIONAHA.120.047063]
80. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (11): 1265-73. [DOI:10.1001/jamacardio.2020.3557]
81. Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020; 5 (11): 1281-5. [DOI:10.1001/jamacardio.2020.3551]
82. Sharma A, Garcia G, Arumugaswami V, Svendsen CN. Human iPSC-Derived Cardiomyocytes are Susceptible to SARS-CoV-2 Infection. Cell Rep Med. 2020; 1 (4): 100052. [DOI:10.1016/j.xcrm.2020.100052]
83. Colivicchi F, Di Fusco SA, Magnanti M, Cipriani M, Imperoli G. The impact of the coronavirus disease-2019 pandemic and Italian lockdown measures on clinical presentation and management of acute heart failure. J Card Fail. 2020; 26 (6): 464-5. [DOI:10.1016/j.cardfail.2020.05.007]
84. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45 (3): 230-32. [DOI:10.1007/s00059-020-04909-z]
85. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17 (5): 259-60. [DOI:10.1038/s41569-020-0360-5]
86. Błyszczuk P. Myocarditis in humans and in experimental animal models. Front Cardiovasc Med. 2019; 6: 64. [DOI:10.3389/fcvm.2019.00064]
87. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 116 (10): 1666-87. [DOI:10.1093/cvr/cvaa106]
88. Wongchana W, Palaga T. Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell Mol Immunol. 2012; 9 (2): 155-62. [DOI:10.1038/cmi.2011.36]
89. Samidurai A, Das A. Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic~ Strategies. Int J Mol Sci. 2020; 21 (18): 6790. [DOI:10.3390/ijms21186790]
90. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8 (4): e21. [DOI:10.1016/S2213-2600(20)30116-8]
91. Sun M, Yang J, Sun Y, Su G. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43 (0): E014-.
92. Furuhashi M, Moniwa N, Mita T, Fuseya T, Ishimura S, Ohno K, et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens. 2015; 28 (1): 15-21. [DOI:10.1093/ajh/hpu086]
93. Jarcho JA, Ingelfinger JR, Hamel MB, D'Agostino Sr RB, Harrington DP. Inhibitors of the renin-angiotensin-aldosterone system and COVID-19. N Engl J Med. 2020; 382 (25): 2462-4. [DOI:10.1056/NEJMe2012924]
94. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020; 382 (25): 2431-40. [DOI:10.1056/NEJMoa2006923]
95. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323 (15): 1488-94. [DOI:10.1001/jama.2020.3204]
96. Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J. Thromb Thrombolysis. 2020; 50 (1): 54-67. [DOI:10.1007/s11239-020-02134-3]
97. Bompard F, Monnier H, Saab I, Tordjman M, Abdoul H, Fournier L, et al. Pulmonary embolism in patients with Covid-19 pneumonia. Eur Respir J. 2020; 56 (1): 2001365. [DOI:10.1183/13993003.01365-2020]
98. Criel M, Falter M, Jaeken J, Van Kerrebroeck M, Lefere I, Meylaerts L, et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? Eur Respir J. 2020; 56 (1): 2001201. [DOI:10.1183/13993003.01201-2020]
99. Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020; 41 (19): 1858. [DOI:10.1093/eurheartj/ehaa254]
100. Dolhnikoff M, Duarte‐Neto AN, de Almeida Monteiro RA, da Silva LFF, de Oliveira EP, Saldiva PHN, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID‐19. J Thromb Haemost. 2020; 18 (6): 1517-19. [DOI:10.1111/jth.14844]
101. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020; 142 (2): 184-6. [DOI:10.1161/CIRCULATIONAHA.120.047430]
102. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012; 126 (6): 753-67. [DOI:10.1161/CIRCULATIONAHA.112.093245]
103. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005; 111 (20): 2605-10. [DOI:10.1161/CIRCULATIONAHA.104.510461]
104. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb Vasc Biol. 2003; 23 (2): 168-75. [DOI:10.1161/01.ATV.0000051384.43104.FC]
105. Yang R-X, Zheng R-D, Fan J-G. Etiology and management of liver injury in patients with COVID-19. World J. Gastroenterol. 2020; 26 (32): 4753-62. [DOI:10.3748/wjg.v26.i32.4753]
106. Al-Obaidi MJ, Bahadoran A, Wang S, Manikam R, Raju CS, Sekaran S. Disruption of the blood brain barrier is vital property of neurotropic viral infection of the central nervous system. Acta Virol. 2018; 62 (1): 16-27. [DOI:10.4149/av_2018_102]
107. Michalicova A, Bhide K, Bhide M, Kovac A. How viruses infiltrate the central nervous system. Acta Virol. 2017; 61 (4): 393-400. [DOI:10.4149/av_2017_401]
108. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020; 30 (7): 1346-51. [DOI:10.1016/j.cub.2020.03.022]
109. Hung EC, Chim SS, Chan PK, Tong YK, Ng EK, Chiu RW, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003; 49 (12): 2108-9. [DOI:10.1373/clinchem.2003.025437]
110. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82 (15): 7264-75. [DOI:10.1128/JVI.00737-08]
111. Tsai L, Hsieh S, Chang Y. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan. 2005; 14 (3): 113-9.
112. Zhang Q, Ding Y, Hou J, He L, Huang Z, Wang H, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Di Yi Jun Yi Da Xue Xue Bao. 2003; 23 (11): 1125-7.
113. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202 (3): 415-24. [DOI:10.1084/jem.20050828]
114. Kim J-E, Heo J-H, Kim H-o, Song S-h, Park S-S, Park T-H, et al. Neurological complications during treatment of middle east respiratory syndrome. J Clin Neurol. 2017; 13 (3): 227-33. [DOI:10.3988/jcn.2017.13.3.227]
115. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
116. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020; 296 (2): 119-20. [DOI:10.1148/radiol.2020201187]
117. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020; 77 (6): 683- 90. [DOI:10.1001/jamaneurol.2020.1127]
118. Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020. [DOI:10.1101/2020.03.16.20035105]
119. Nemoto W, Yamagata R, Nakagawasai O, Nakagawa K, Hung W-Y, Fujita M, et al. Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice. Eur J Pharmacol. 2020; 872: 172950. [DOI:10.1016/j.ejphar.2020.172950]
120. Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK, Singh SK. Japanese encephalitis virus: from genome to infectome. Microbes Infect. 2011; 13 (4): 312-21. [DOI:10.1016/j.micinf.2011.01.002]
121. Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013; 13 (4): 379-93. [DOI:10.1016/j.chom.2013.03.010]
122. Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018; 12: 386. [DOI:10.3389/fncel.2018.00386]
123. Abdennour L, Zeghal C, Deme M, Puybasset L. Interaction brain-lungs. Paper presented at: Ann Fr Anesth Reanim. 2012; 31 (6): 101-7. [DOI:10.1016/j.annfar.2012.04.013]
124. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil Med Res. 2020; 7 (1): 11. [DOI:10.1186/s40779-020-00240-0]
125. Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol. 2017; 18 (2): 132-41. [DOI:10.1038/ni.3656]
126. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033-4. [DOI:10.1016/S0140-6736(20)30628-0]
127. Yin C, Wang C, Tang Z, Wen Y, Zhang S, Wang B. Clinical analysis of multiple organ dysfunction syndrome in patients suffering from SARS. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2004; 16 (11): 646-50.
128. Li Y, Fu L, Gonzales DM, Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J Virol. 2004; 78 (7): 3398-406. [DOI:10.1128/JVI.78.7.3398-3406.2004]
129. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020; 97 (5): 829-38. [DOI:10.1016/j.kint.2020.03.005]
130. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020. [DOI:10.1101/2020.02.10.20021832]
131. Miller AJ, Arnold AC. The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res. 2019; 29 (2): 231-43. [DOI:10.1007/s10286-018-0572-5]
132. Sungnak W, Bécavin C, Berg M. HCA Lung Biological Network. SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. ArXiv. 2020; 200306122.
133. Jahanshahlu L, Rezaei N. Central nervous system involvement in COVID-19. Arch Med Res. 2020; 51 (7): 721-2. [DOI:10.1016/j.arcmed.2020.05.016]
134. Sriram K, Insel PA. Risks of ACE inhibitor and ARB usage in COVID‐19: evaluating the evidence. Clin Pharmacol Ther. 2020; 108 (2): 236-41. [DOI:10.1002/cpt.1863]
135. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020; 11 (9): 1200-3. [DOI:10.1021/acschemneuro.0c00172]
136. Kanageswaran N, Demond M, Nagel M, Schreiner BS, Baumgart S, Scholz P, et al. Deep sequencing of the murine olfactory receptor neuron transcriptome. PloS One. 2015; 10 (1): e0113170. [DOI:10.1371/journal.pone.0113170]
137. Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res. 2017; 367 (3): 571-90. [DOI:10.1007/s00441-016-2559-7]
138. Wang T, Hu M, Chen X, Fu Y, Lei C, Dong H, et al. Caution on kidney dysfunctions of 2019-nCoV patients. MedRxiv. 2020.
139. Mubarak M, Nasri H. COVID-19 nephropathy; an emerging condition caused by novel coronavirus infection. J Nephropathol. 2020; 9 (3): e21. [DOI:10.34172/jnp.2020.21]
140. Xu S, Fu L, Fei J, Xiang H-X, Xiang Y, Tan Z-X, et al. Acute kidney injury at early stage as a negative prognostic indicator of patients with COVID-19: a hospital-based retrospective analysis. medRxiv. 2020.
141. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol. 2020: 214: 108393. [DOI:10.1016/j.clim.2020.108393]
142. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS One. 2012; 7 (5): e37135. [DOI:10.1371/journal.pone.0037135]
143. Diao B, Feng Z, Wang C, Wang H, Liu L, Wang C, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nat Commun. 2020; 12 (1): 2506. [DOI:10.1038/s41467-021-22781-1]
144. Kuo Y-L, Jou I-M, Jeng S-F, Chu C-H, Huang J-S, Hsu T-I, et al. Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture. Sci Rep. 2019; 9 (1): 1-6. [DOI:10.1038/s41598-019-46439-7]
145. Tucker PS, Scanlan AT, Dalbo VJ. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev. 2015; 2015: 806358. [DOI:10.1155/2015/806358]
146. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426 (6965): 450-4. [DOI:10.1038/nature02145]
147. Hamming I, Timens W, Bulthuis M, Lely A, Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203 (2): 631-7. [DOI:10.1002/path.1570]
148. Galván Casas C, Catala A, Carretero Hernández G, Rodríguez‐Jiménez P, Fernández‐Nieto D, Rodríguez‐Villa Lario A, et al. Classification of the cutaneous manifestations of COVID‐19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 2020; 183 (1): 71-7. [DOI:10.1111/bjd.19163]
149. Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, Abediazar S, Shoja MM, Ardalan M, et al. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev Med Virol. 2021; 31 (3): e2176. [DOI:10.1002/rmv.2176]
150. Rubio‐Muniz C, Puerta‐Peña M, Falkenhain‐López D, Arroyo‐Andrés J, Agud‐Dios M, Rodriguez‐Peralto J, et al. The broad spectrum of dermatological manifestations in COVID‐19: clinical and histopathological features learned from a series of 34 cases. J Eur Acad Dermatol Venereol. 2020; 34 (10): e574-6. [DOI:10.1111/jdv.16734]
151. Reymundo A, Fernáldez‐Bernáldez A, Reolid A, Butrón B, Fernández‐Rico P, Muñoz‐Hernández P, et al. Clinical and histological characterization of late appearance maculopapular eruptions in association with the coronavirus disease 2019. A case series of seven patients. J Eur Acad Dermatol Venereol. 2020; 34 (12): e755-7. [DOI:10.1111/jdv.16707]
152. Askin O, Altunkalem RN, Altinisik DD, Uzuncakmak TK, Tursen U, Kutlubay Z. Cutaneous manifestations in hospitalized patients diagnosed as COVID‐19. Dermatol Ther. 2020; 33 (6): e13896. [DOI:10.1111/dth.13896]
153. Gianotti R, Recalcati S, Fantini F, Riva C, Milani M, Dainese E, et al. Histopathological study of a broad spectrum of skin dermatoses in patients affected or highly suspected of infection by COVID-19 in the northern part of Italy: analysis of the many faces of the viral-induced skin diseases in previous and new reported cases. Am J Dermatopathol. 2020; 42 (8): 564-70. [DOI:10.1097/DAD.0000000000001707]
154. Diotallevi F, Campanati A, Bianchelli T, Bobyr I, Luchetti MM, Marconi B, et al. Skin involvement in SARS‐CoV‐2 infection: case series. J Med Virol. 2020; 92 (11): 2332-4. [DOI:10.1002/jmv.26012]
155. Radonjic-Hoesli S, Hofmeier KS, Micaletto S, Schmid-Grendelmeier P, Bircher A, Simon D. Urticaria and angioedema: an update on classification and pathogenesis. Clin Rev Allergy Immunol. 2018; 54 (1): 88-101. [DOI:10.1007/s12016-017-8628-1]
156. Criado PR, Abdalla BMZ, de Assis IC, van Blarcum de Graaff Mello C, Caputo GC, Vieira IC. Are the cutaneous manifestations during or due to SARS-CoV-2 infection/COVID-19 frequent or not? Revision of possible pathophysiologic mechanisms. J Inflamm Res. 2020; 69 (8): 745-56. [DOI:10.1007/s00011-020-01370-w]
157. Cappel JA, Wetter DA. Clinical characteristics, etiologic associations, laboratory findings, treatment, and proposal of diagnostic criteria of pernio (chilblains) in a series of 104 patients at Mayo Clinic, 2000 to 2011. Mayo Clin Proc. 2014; 89 (2): 207-15. [DOI:10.1016/j.mayocp.2013.09.020]
158. Fernandez‐Nieto D, Ortega‐Quijano D, Jimenez‐Cauhe J, Burgos‐Blasco P, de Perosanz‐Lobo D, Suarez‐Valle A, et al. Clinical and histological characterization of vesicular COVID‐19 rashes: a prospective study in a tertiary care hospital. Clin Exp Dermatol. 2020; 45 (7): 872-5. [DOI:10.1111/ced.14277]
159. Hughes M, Herrick AL. Raynaud's phenomenon. Best Pract Res Clin Rheumatol. 2016; 30 (1): 112-32. [DOI:10.1016/j.berh.2016.04.001]
160. Drago F, Ciccarese G, Gasparini G, Cogorno L, Javor S, Toniolo A, et al. Contemporary infectious exanthems: an update. Future Microbiol. 2017; 12 (2): 171-93. [DOI:10.2217/fmb-2016-0147]
161. Caputo V, Schroeder J, Rongioletti F. A generalized purpuric eruption with histopathologic features of leucocytoclastic vasculitis in a patient severely ill with COVID‐19. J Eur Acad Dermatol Venereol. 2020; 34 (10): e579-81. [DOI:10.1111/jdv.16737]
162. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020; 220: 1-13. [DOI:10.1016/j.trsl.2020.04.007]
163. Sajjan VV, Lunge S, Swamy MB, Pandit AM. Livedo reticularis: a review of the literature. Indian Dermatol Online J. 2015; 6 (5): 315-21. [DOI:10.4103/2229-5178.164493]
164. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844-7. [DOI:10.1111/jth.14768]
165. Manalo IF, Smith MK, Cheeley J, Jacobs R. Reply: A Dermatologic Manifestation of COVID-19: Transient Livedo Reticularis. J Am Acad Dermatol. 2020; 83 (2): e157. [DOI:10.1016/j.jaad.2020.05.001]
166. Wheatland R. Molecular mimicry of ACTH in SARS-implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004; 63 (5): 855-62. [DOI:10.1016/j.mehy.2004.04.009]
167. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004; 203 (2): 622-30. [DOI:10.1002/path.1560]
168. Leow MKS, Kwek DSK, Ng AWK, Ong KC, Kaw GJL, Lee LSU. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol. 2005; 63 (2): 197-202. [DOI:10.1111/j.1365-2265.2005.02325.x]
169. Scaroni C, Armigliato M, Cannavò S. COVID-19 outbreak and steroids administration: are patients treated for Sars-Cov-2 at risk of adrenal insufficiency? J Endocrinol Investig. 2020; 43 (7): 1035-6. [DOI:10.1007/s40618-020-01253-1]
170. Wei L, Sun S, Zhang J, Zhu H, Xu Y, Ma Q, et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol. 2010; 88 (4): 723-30. [DOI:10.1139/O10-022]
171. Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020; 12 (2): 244. [DOI:10.3390/v12020244]
172. Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM, Santos RA. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 2011; 95 (1): 176-81. [DOI:10.1016/j.fertnstert.2010.06.060]
173. Verma S, Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis. Biol Reprod. 2020; 103 (3): 449-51. [DOI:10.1093/biolre/ioaa080]
174. Bahadur G, Acharya S, Muneer A, Huirne J, Łukaszuk M, Doreski PA, et al. SARS-CoV-2: diagnostic and design conundrums in the context of male factor infertility. Reprod Biomed Online. 2020; 41 (3): 365-9. [DOI:10.1016/j.rbmo.2020.05.014]
175. Vaz-Silva J, Carneiro M, Ferreira M, Pinheiro S, Silva D, Silva A, et al. The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod Sci. 2009; 16 (3): 247-56. [DOI:10.1177/1933719108327593]
176. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006; 74 (2): 410-6. [DOI:10.1095/biolreprod.105.044776]
177. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020; 113 (6): 1135-9. [DOI:10.1016/j.fertnstert.2020.04.024]
178. Gagliardi L, Bertacca C, Centenari C, Merusi I, Parolo E, Ragazzo V, et al. Orchiepididymitis in a boy with COVID-19. Pediatr Infect Dis. 2020; 39 (8): e200-2. [DOI:10.1097/INF.0000000000002769]
179. Illiano E, Trama F, Costantini E. Could COVID‐19 have an impact on male fertility? Andrologia. 2020; 52 (6): e13654. [DOI:10.1111/and.13654]
180. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, et al. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020.
181. Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, et al. ACE2 and SARS-CoV-2 Expression in the Normal and COVID-19 Pancreas. bioRxiv. 2020. [DOI:10.1101/2020.08.31.270736]
182. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020; 3 (5): e208292. [DOI:10.1001/jamanetworkopen.2020.8292]
183. Dube GK, Husain SA, McCune KR, Sandoval PR, Ratner LE, Cohen DJ. COVID‐19 in pancreas transplant recipients. Transpl Infect Dis. 2020: 22 (6): e13359. [DOI:10.1111/tid.13359]
184. Musa SS, Zhao S, Wang MH, Habib AG, Mustapha UT, He D. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infect Dis Poverty. 2020; 9 (1): 96. [DOI:10.1186/s40249-020-00718-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.