Volume 10, Issue 4 (12-2022)                   JoMMID 2022, 10(4): 157-162 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taghinejad Z, Asgharzadeh M, Mahdavi Poor B, Asgharzadeh V, Samadi Kafil H, Rashedi J. Iron Deficiency Anemia and COVID-19. JoMMID 2022; 10 (4) :157-162
URL: http://jommid.pasteur.ac.ir/article-1-463-en.html
Biotechnology Research Center and Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:   (436 Views)
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant health and financial issue in the current century. Despite significant attempts to manage the illness, the transmission routes of the virus and its widespread genomic mutations have led to an increasing number of new infections and mortality rates. In the absence of specific treatment for this new virus, identifying and managing factors affecting the prognosis of the disease is one of the critical strategies to reduce disease mortality. Patients with iron deficiency anemia (IDA), who account for an estimated half a billion people globally, are more prone to infections due to immune system disorders. Since they visit hospitals more frequently for follow-up care and diagnosis, they are more susceptible to becoming infected with SARS-CoV-2. Once infected with SARS-CoV-2, low hemoglobin (Hb) levels and compromised immune systems disrupt the restriction of infection in these individuals, ultimately leading to severe complications of COVID-19.
Full-Text [PDF 786 kb]   (127 Downloads)    
Type of Study: Review article | Subject: Other
Received: 2022/05/1 | Accepted: 2022/12/10 | Published: 2022/12/31

1. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004; 430 (6996): 242-49. [DOI:10.1038/nature02759]
2. Ge H, Wang X, Yuan X, Xiao G, Wang Ch, Deng T, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis. 2020; 39 (6): 1011-9. [DOI:10.1007/s10096-020-03874-z]
3. WHO G. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization 2020.
4. WH O. WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. WHO Dir Gen speeches 2020.
5. Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. Am J Respir Crit Care Med. 2020; 202 (5): 651-9 [DOI:10.1164/rccm.202004-1263PP]
6. Mirmoeeni S, Jafari AA, Hashemi SZ, Taghavi EA, Azani A, Ghasrsaz H, et al. Cardiovascular manifestations in COVID-19 patients: A systematic review and meta-analysis. J Cardiovasc Thorac Res. 2021; 13 (3):181-9. [DOI:10.34172/jcvtr.2021.30]
7. Rashedi J, Mahdavi Poor B, Asgharzadeh V, Pourostadi M, Samadi Kafil H, Vegari A, et al. Risk factors for COVID-19. Infez Med. 2020; 28 (4): 469-74.
8. Jalali F, Hatami F, Saravi M, Jafaripour I, Hedayati MT, Amin K, Pourkia R, et al. Characteristics and outcomes of hospitalized patients with cardiovascular complications of COVID-19. J Cardiovasc Thorac Res. 2021; 13 (4): 355-63. [DOI:10.34172/jcvtr.2021.53]
9. Stoltzfus RJ. Defining iron-deficiency anemia in public health terms: a time for reflection. J Nutr. 2001; 131 (2): 565S-7S. [DOI:10.1093/jn/131.2.565S]
10. Zareifar S, Dehghani SM, Rahanjam N, Far MRF. Prevalence of Iron deficiency anemia in children with liver cirrhosis: A cross-sectional study. Int J Hematol Oncol Stem Cell Res. 2015; 9 (3): 128-32.
11. Moradveisi B, Yazdanifard P, Naleini N, Sohrabi M. Comparison of Iron alone and Zinc Plus Iron Supplementation Effect on the Clinical and Laboratory Features of Children with Iron Deficiency Anemia. Int J Hematol Oncol Stem Cell Res. 2019; 13 (4): 220-8. [DOI:10.18502/ijhoscr.v13i4.1899]
12. Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015; 372 (19): 1832-43. [DOI:10.1056/NEJMra1401038]
13. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of nutrition 2001;131(2):568S-80S [DOI:10.1093/jn/131.2.568S]
14. Clark SF. Iron deficiency anemia. Nutr Clin Pract. 2008; 23 (2): 128-41. [DOI:10.1177/0884533608314536]
15. Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, et al. Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. Ann Intensive Care. 2020; 10 (1): 1-24. [DOI:10.1186/s13613-020-00689-1]
16. Albagshi MH, Albagshi MH. Sickle cell disease: high risk or no risk for coronavirus disease 2019 infection. J Appl Hematol. 2020; 11 (2):89-90. [DOI:10.4103/joah.joah_95_20]
17. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus 2020; 12 (3): e7423. [DOI:10.7759/cureus.7423]
18. Abduljalil JM, Abduljalil BM. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view. New Microbes New Infect. 2020; 35: 100672. [DOI:10.1016/j.nmni.2020.100672]
19. Najafi K, Maroufi P, Khodadadi E, Zeinalzadeh E, Khudaverdid G, Asgharzadeh M, et al. SARS-CoV-2 receptor ACE2 and molecular pathway to enter target cells during infection. Rev Res Med Microbiol. 2022; 33 (1): e105-e13. [DOI:10.1097/MRM.0000000000000237]
20. Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020; 3 (9): e202000786. [DOI:10.26508/lsa.202000786]
21. Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020; 14 (4): 407-12. [DOI:10.1016/j.dsx.2020.04.020]
22. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology; 2017. Springer.
23. Mostafavi A, Tabatabaei SAH, Fard SZ, Majidi F, Mohagheghi A, Shirani S. The incidence of myopericarditis in patients with COVID-19. J Cardiovasc Thorac Res. 2021; 13 (3): 203-7. [DOI:10.34172/jcvtr.2021.36]
24. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
25. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020; 91 (1): 157-60.
26. Payandeh M, Rahimi Z, Zare ME, Kansestani AN, Gohardehi F, Hashemian AH. The prevalence of anemia and hemoglobinopathies in the hematologic clinics of the Kermanshah Province, Western Iran. Int J Hematol Oncol Stem Cell Res. 2014; 8 (2): 33-7.
27. Shekarriz R, Vaziri MM. Iron profile and inflammatory status of overweight and obese women in Sari, North of Iran. Int J Hematol Oncol Stem Cell Res. 2017; 11 (2): 108-13.
28. Warner MJ, Kamran MT. Anemia, iron deficiency. 2017
29. Chung M, Moorthy D, Hadar N, Salvi P, Iovin RC, Lau J. Biomarkers for assessing and managing iron deficiency anemia in late-stage chronic kidney disease. 2012.
30. Kuvibidila SR, Porretta C, Baliga BS, Leiva LE. Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron-deficient mice. Br J Nutr. 2001; 86 (2): 157-62. [DOI:10.1079/BJN2001366]
31. Weiss G. Iron and immunity: a double‐edged sword. Eur J Clin Invest. 2002; 32: 70-8. [DOI:10.1046/j.1365-2362.2002.0320s1070.x]
32. Ahluwalia N, Sun J, Krause D, Mastro A, Handte G. Immune function is impaired in iron-deficient, homebound, older women. Am J Clin Nutr. 2004; 79 (3): 516-21. [DOI:10.1093/ajcn/79.3.516]
33. Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci. 2019; 6: 116. [DOI:10.3389/fmolb.2019.00116]
34. Kuvibidila SR, Porretta C, Surendra Baliga B, Leiva LE. Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron-deficient mice. Br J Nutr. 2001; 86 (2): 157-62. [DOI:10.1079/BJN2001366]
35. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009; 30 (7): 366-73. [DOI:10.1016/j.it.2009.04.003]
36. Tsouchnikas I, Tsilipakou M, Daniilidis M, Kyriazis G, Pasadakis P, Parapanissiou E, et al. Effect of iron loading on peripheral blood lymphocyte subsets and on circulating cytokine levels in iron-depleted hemodialysis patients receiving erythropoietin. Nephron Clin Pract. 2007; 107(3): c97-c102. [DOI:10.1159/000108650]
37. Thibault H, Galan P, Selz F, Preziosi P, Olivier C, Badoual J, et al. The immune response in iron-deficient young children: effect of iron supplementation on cell-mediated immunity. Eur J Pediatr. 1993; 152 (2): 120-4. [DOI:10.1007/BF02072487]
38. Kumar V, Choudhry VP. Iron deficiency and infection. Indian J Pediatr. 2010; 77 (7): 789-93. [DOI:10.1007/s12098-010-0120-3]
39. Ranasinghe AW, Warnakulasuriya K, Tennekoon G, Seneviratna B. Oral mucosal changes in iron deficiency anemia in a Sri Lankan female population. Oral Surg Oral Med Oral Pathol. 1983; 55 (1): 29-32 [DOI:10.1016/0030-4220(83)90302-X]
40. Bergman M, Salman H, Pinchasi R, Straussberg R, Djaldetti M, Bessler H. Phagocytic capacity and apoptosis of peripheral blood cells from patients with iron deficiency anemia. Biomed Pharmacother. 2005; 59 (6): 307-11. [DOI:10.1016/j.biopha.2004.11.009]
41. Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2013; 3 (7): a011866. [DOI:10.1101/cshperspect.a011866]
42. Stukus DR, Rose ME, Lang DM. Patients with Recurrent Infections.
43. Saloojee H, Pettifor JM. Iron deficiency and impaired child development. BMJ. 2001; 323 (7326): 1377-8. [DOI:10.1136/bmj.323.7326.1377]
44. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007; 25: 171-92. [DOI:10.1146/annurev.immunol.25.022106.141548]
45. Wagner J, DuPont A, Larson S, Cash B, Farooq A. Absolute lymphocyte count is a prognostic marker in Covid‐19: A retrospective cohort review. Int J Lab Hematol. 2020; 42 (6): 761-5. [DOI:10.1111/ijlh.13288]
46. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, M Dan J, Rydyznski Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 181 (7): 1489-501. [DOI:10.1016/j.cell.2020.05.015]
47. Brigham EP, McCormack MC, Takemoto CM, Matsui EC. Iron status is associated with asthma and lung function in US women. PloS one 2015; 10 (2): e0117545. [DOI:10.1371/journal.pone.0117545]
48. Bucca C, Culla B, Brussino L, Ricciardolo FL, Cicolin A, Heffler A, et al. Effect of iron supplementation in women with chronic cough and iron deficiency. Int J Clin Pract. 2012; 66 (11): 1095-100. [DOI:10.1111/ijcp.12001]
49. C J Rhodes, J Wharton, L Howard, J S R Gibbs, A Vonk-Noordegraaf, M R Wilkins . Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011; 38 (6): 1453-60. [DOI:10.1183/09031936.00037711]
50. Cotroneo E, Ashek A, Wang L, et al. Iron Homeostasis and Pulmonary Hypertension. Cir Res. 2015; 116 (10): 1680-90. [DOI:10.1161/CIRCRESAHA.116.305265]
51. Taneri PE, Gómez-Ochoa SA, Llanaj E, Francis Raguindin P, Rojas LZ, Milena Roa-Díaz Z, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol . 2020; 35 (8): 763-73. [DOI:10.1007/s10654-020-00678-5]
52. Nunes AR, Tátá M. The impact of anaemia and iron deficiency in chronic obstructive pulmonary disease: A clinical overview. Rev Port Pneumol. 2017; 23 (3): 146-55 [DOI:10.1016/j.rppnen.2016.12.005]
53. Kallet RH, Lipnick MS, Zhuo H, Pangilinan LP, Gomez A. Characteristics of Nonpulmonary Organ Dysfunction at Onset of ARDS Based on the Berlin Definition. Respir Care. 2019; 64 (5): 493-501. [DOI:10.4187/respcare.06165]
54. Amato MB, Meade MO, Slutsky AS, Brochard L, L V Costa E, Schoenfeld D, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-55. [DOI:10.1056/NEJMsa1410639]
55. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: a retrospective study. Open forum infectious diseases; 2020. Oxford University Press US.
56. Sonnweber T, Grubwieser P, Sahanic S, Katharina Böhm A, Pizzini A, Luger A, et al. The Impact of Iron Dyshomeostasis and Anaemia on Long-Term Pulmonary Recovery and Persisting Symptom Burden after COVID-19: A Prospective Observational Cohort Study. Metabolites. 2022;12 (6): 546. [DOI:10.3390/metabo12060546]
57. Hariyanto TI, Kurniawan A. Anemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Transfus Apher Sci. 2020; 59 (6): 102926. [DOI:10.1016/j.transci.2020.102926]
58. Asgharzadeh M, Valiollahzadeh MR, Poor BM, Samadi Kafil H, Asgharzah V, Pourostadi M, et al. Laboratory Diagnosis of COVID-19. Clin Pulm Med. 2020; 27 (5):148-53. [DOI:10.1097/CPM.0000000000000374]
59. Kilercik M, Ucal Y, Serdar M, Serteser M, Ozpinar A, Schweigert FJ. Zinc protoporphyrin levels in COVID-19 are indicative of iron deficiency and potential predictor of disease severity. PloS one. 2022; 17 (2): e0262487. [DOI:10.1371/journal.pone.0262487]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.