Volume 10, Issue 4 (12-2022)                   JoMMID 2022, 10(4): 163-178 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tyagi R, Paul C, Banerjee J, Kaul R, Banerjee S. Virus Association with Gastric Inflammation and Cancer: An Updated Overview. JoMMID 2022; 10 (4) :163-178
URL: http://jommid.pasteur.ac.ir/article-1-454-en.html
Amity Institute of Virology and Immunology (AIVI), J-3 Block, Sector-125, Noida, Amity University, Uttar Pradesh, India; Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba institutional area, Gandhinagar, Gujarat- 382426, India
Abstract:   (898 Views)
Enteric viruses are the most common cause of gastroenteritis or infectious diarrhea worldwide. The genera Rotavirus (RoV), astrovirus (AstV), and Norovirus (NoV) are predominant viruses causing acute diarrhea in children and inflammation in the gastrointestinal tract. Apart from the enteric viruses, human papillomavirus (HPV), John Cunningham human polyomavirus (JCV), and human immunodeficiency viruses (HIV) are also significantly linked with gastrointestinal inflammation and gastric neoplasia. Moreover, recent studies demonstrated the direct induction of acute gut inflammation by Norovirus infection. Though mild inflammation occurs with astroviral infection, pro-inflammatory signaling pathways are also activated. Epstein-Barr virus (EBV), a significant tumor-causing pathogenic gammaherpesvirus, is also associated with diarrheal disease due to increased local and systemic inflammation. The association of EBV infection with ulcer colitis (UD), Crohn's disease (CD), inflammatory bowel syndrome (IBD), peptic ulcers, and chronic fatigue syndrome (CFS) indicates its potentiality for enhancing gut inflammation and gastric cancers. In the current scenario, extensive research is a prerequisite to understanding and achieving in-depth knowledge of the molecular mechanisms involved with enteric and tumor viral antigen-induced gut inflammation and cancer progression. This review represents new insights into the current research linking enteric and other pathogenic viruses as a trigger for gut inflammation and gastrointestinal malignancies. 
Full-Text [PDF 1477 kb]   (621 Downloads)    
Type of Study: Review article | Subject: Host-pathogen interactions and susceptibility factors
Received: 2022/03/18 | Accepted: 2022/10/25 | Published: 2022/12/31

References
1. Oude Munnink BB, van der Hoek L. Viruses Causing Gastroenteritis: The Known, The New and Those Beyond. Viruses. 2016; 8 (2): 42. [DOI:10.3390/v8020042]
2. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018; 46 (D1): D708-D717. [DOI:10.1093/nar/gkx932]
3. Malik YS, Matthijnssens J. Enteric viral infection in human and animal. VirusDisease. 2014; 25 (2): 145-6. [DOI:10.1007/s13337-014-0224-x]
4. Maurya PK, Singh S. Nanotechnology in Modern Animal Biotechnology: Concepts and Applications. Elsevier; 2019. 180 p.
5. Mishra P, Banga I, Tyagi R, Munjal T, Goel A, Capalash N, et al. An immunochromatographic dipstick as an alternate for monitoring of heroin metabolites in urine samples. RSC Adv. 2018; 8 (41): 23163-70. [DOI:10.1039/C8RA02018C]
6. Banga I, Tyagi R, Shahdeo D, Gandhi S. Chapter 1 - Biosensors and Their Application for the Detection of Avian Influenza Virus. In: Maurya PK, Singh S, editors. Nanotechnology in Modern Animal Biotechnology. Elsevier; 2019. p. 1-16. [DOI:10.1016/B978-0-12-818823-1.00001-6]
7. Leshem E, Lopman BA. Viral Gastroenteritis. Princ Pract Pediatr Infect Dis. 2018; 383-387. [DOI:10.1016/B978-0-323-40181-4.00056-6]
8. Harhaj EW, Shembade N. Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. Biology. 2020; 9 (11): 390. [DOI:10.3390/biology9110390]
9. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019; 25 (12): 1822-32. [DOI:10.1038/s41591-019-0675-0]
10. Hendrickson BA, Gokhale R, Cho JH. Clinical Aspects and Pathophysiology of Inflammatory Bowel Disease. Clin Microbiol Rev. 2002; 15 (1): 79-94. [DOI:10.1128/CMR.15.1.79-94.2002]
11. Belizário JE, Faintuch J. Microbiome and Gut Dysbiosis. Exp Suppl 2012. 2018; 109: 459-76. [DOI:10.1007/978-3-319-74932-7_13]
12. Kelly CP, Becker S, Linevsky JK, Joshi MA, O'Keane JC, Dickey BF, et al. Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J Clin Invest. 1994; 93 (3): 1257-65. [DOI:10.1172/JCI117080]
13. Sansonetti PJ, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000; 12 (5): 581-90. [DOI:10.1016/S1074-7613(00)80209-5]
14. Hodges K, Gill R. Infectious diarrhea. Gut Microbes. 2010; 1 (1): 4-21. [DOI:10.4161/gmic.1.1.11036]
15. Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, et al. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol. 2011; 28 (5): 1687-702. [DOI:10.1093/molbev/msq349]
16. Ng SC, Benjamin JL, McCarthy NE, Hedin CRH, Koutsoumpas A, Plamondon S, et al. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm Bowel Dis. 2011; 17 (10): 2027-37. [DOI:10.1002/ibd.21590]
17. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta BBA - Mol Cell Res. 2014; 1843 (11): 2563-82. [DOI:10.1016/j.bbamcr.2014.05.014]
18. Rogers MAM, Aronoff DM. The Influence of Nonsteroidal Anti-Inflammatory Drugs on the Gut Microbiome. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2016; 22 (2): 178. [DOI:10.1016/j.cmi.2015.10.003]
19. Koo HL, Ajami N, Atmar RL, DuPont HL. Noroviruses: The leading cause of gastroenteritis worldwide. Discov Med. 2010; 10 (50): 61-70.
20. Shah MP, Hall AJ. Norovirus Illnesses in Children and Adolescents. Infect Dis Clin North Am. 2018; 32 (1): 103-18. [DOI:10.1016/j.idc.2017.11.004]
21. Chen Y, Hall AJ, Kirk MD. Norovirus Disease in Older Adults Living in Long-Term Care Facilities: Strategies for Management. Curr Geriatr Rep. 2017; 6 (1): 26-33. [DOI:10.1007/s13670-017-0195-z]
22. Manuel CS, Moore MD, Jaykus LA. Predicting human norovirus infectivity - Recent advances and continued challenges. Food Microbiol. 2018; 76: 337-45. [DOI:10.1016/j.fm.2018.06.015]
23. Roth AN, Karst SM. Norovirus Mechanisms of Immune Antagonism. Curr Opin Virol. 2016; 16: 24-30. [DOI:10.1016/j.coviro.2015.11.005]
24. Parra GI. Emergence of norovirus strains: A tale of two genes. Virus Evol. 2019; 5 (2): vez048. [DOI:10.1093/ve/vez048]
25. Graves NS. Acute Gastroenteritis. Prim Care. 2013; 40 (3): 727-41. [DOI:10.1016/j.pop.2013.05.006]
26. Jeong HS, Jeong A, Cheon DS. Epidemiology of astrovirus infection in children. Korean J Pediatr. 2012; 55 (3): 77-82. [DOI:10.3345/kjp.2012.55.3.77]
27. Roach SN, Langlois RA. Intra- and Cross-Species Transmission of Astroviruses. Viruses. 2021; 13 (6): 1127. [DOI:10.3390/v13061127]
28. Koci MD, Moser LA, Kelley LA, Larsen D, Brown CC, Schultz-Cherry S. Astrovirus Induces Diarrhea in the Absence of Inflammation and Cell Death. J Virol. 2003; 77 (21): 11798-808. [DOI:10.1128/JVI.77.21.11798-11808.2003]
29. Bosch A, Pintó RM, Guix S. Human Astroviruses. Clin Microbiol Rev. 2014; 27(4):1048-74. [DOI:10.1128/CMR.00013-14]
30. Schultz-Cherry S. Astroviruses. Ref Module Biomed Sci. 2014; B978-0-12-801238-3.02539-3.
31. Moser LA, Carter M, Schultz-Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. J Virol. 2007; 81 (21): 11937-45. [DOI:10.1128/JVI.00942-07]
32. Guix S, Bosch A, Ribes E, Dora Martínez L, Pintó RM. Apoptosis in astrovirus-infected CaCo-2 cells. Virology. 2004; 319 (2): 249-61. [DOI:10.1016/j.virol.2003.10.036]
33. Méndez E, Salas-Ocampo E, Arias CF. Caspases mediate processing of the capsid precursor and cell release of human astroviruses. J Virol. 2004; 78 (16): 8601-8. [DOI:10.1128/JVI.78.16.8601-8608.2004]
34. Ramig RF. Pathogenesis of intestinal and systemic rotavirus infection. J Virol. 2004; 78 (19): 10213-20. [DOI:10.1128/JVI.78.19.10213-10220.2004]
35. Hart CA, Cunliffe NA, Nakagomi O. Diarrhoea Caused by Viruses. Mansons Trop Dis. 2009; 815-24. [DOI:10.1016/B978-1-4160-4470-3.50049-5]
36. Aoki ST, Trask SD, Coulson BS, Greenberg HB, Dormitzer PR, Harrison SC. Cross-Linking of Rotavirus Outer Capsid Protein VP7 by Antibodies or Disulfides Inhibits Viral Entry. J Virol. 2011; 85 (20): 10509-17. [DOI:10.1128/JVI.00234-11]
37. Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology. 2009; 136 (6): 1939-51. [DOI:10.1053/j.gastro.2009.02.076]
38. Toczylowski K, Jackowska K, Lewandowski D, Kurylonek S, Waszkiewicz-Stojda M, Sulik A. Rotavirus gastroenteritis in children hospitalized in northeastern Poland in 2006-2020: Severity, seasonal trends, and impact of immunization. Int J Infect Dis. 2021; 108: 550-6. [DOI:10.1016/j.ijid.2021.05.070]
39. Zhao L, Shi X, Meng D, Guo J, Li Y, Liang L, et al. Prevalence and genotype distribution of group A rotavirus circulating in Shanxi Province, China during 2015-2019. BMC Infect Dis. 2021; 21 (1): 94. [DOI:10.1186/s12879-021-05795-4]
40. Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis. 2003; 9 (5): 565-72. [DOI:10.3201/eid0905.020562]
41. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primer. 2017; 3: 17083. [DOI:10.1038/nrdp.2017.83]
42. Lundgren O, Svensson L. Pathogenesis of rotavirus diarrhea. Microbes Infect. 2001; 3 (13): 1145-56. [DOI:10.1016/S1286-4579(01)01475-7]
43. Hellysaz A, Hagbom M. Understanding the Central Nervous System Symptoms of Rotavirus: A Qualitative Review. Viruses. 2021; 13 (4): 658. [DOI:10.3390/v13040658]
44. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420 (6917): 860-7. [DOI:10.1038/nature01322]
45. Paul C, Kaul R. Virus-Mediated Cancers in Animals. In: Recent Advances in Animal Virology. Springer; 2019. 409-23. [DOI:10.1007/978-981-13-9073-9_21]
46. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315 (26): 1650-9. [DOI:10.1056/NEJM198612253152606]
47. Saeed U, Waheed Y, Ashraf M. Hepatitis B and hepatitis C viruses: a review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology. Asian Pac J Trop Dis. 2014; 4 (2): 88-96. [DOI:10.1016/S2222-1808(14)60322-4]
48. Bartenschlager R, Sparacio S. Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Res. 2007; 127 (2): 195-207. [DOI:10.1016/j.virusres.2007.02.022]
49. Alter HJ, Nakatsuji Y, Melpolder J, Wages J, Wesley R, Shih JW, et al. The incidence of transfusion-associated hepatitis G virus infection and its relation to liver disease. N Engl J Med. 1997; 336 (11): 747-54. [DOI:10.1056/NEJM199703133361102]
50. Rusyn I, Lemon SM. Mechanisms of HCV-induced liver cancer: What did we learn from in vitro and animal studies? Cancer Lett. 2014; 345 (2): 210-5. [DOI:10.1016/j.canlet.2013.06.028]
51. Imran M, Waheed Y, Manzoor S, Bilal M, Ashraf W, Ali M, et al. Interaction of Hepatitis C virus proteins with pattern recognition receptors. Virol J. 2012; 9: 126. [DOI:10.1186/1743-422X-9-126]
52. Bajaj JS, Sterling RK, Betrapally NS, Nixon DE, Fuchs M, Daita K, et al. HCV eradication does not impact gut dysbiosis or systemic inflammation in cirrhotic patients. Aliment Pharmacol Ther. 2016; 44 (6): 638-43. [DOI:10.1111/apt.13732]
53. Paul C, Khera L, Kaul R. Hepatitis C virus core protein interacts with cellular metastasis suppressor Nm23-H1 and promotes cell migration and invasion. Arch Virol. 2019; 164 (5): 1271-85. [DOI:10.1007/s00705-019-04151-x]
54. Khera L, Paul C, Kaul R. Hepatitis C Virus E1 protein promotes cell migration and invasion by modulating cellular metastasis suppressor Nm23-H1. Virology. 2017; 506: 110-20. [DOI:10.1016/j.virol.2017.03.014]
55. Li YD, Lin JJ, Zheng SS. Inflammatory bowel diseases and hepatitis C virus infection. Hepatobiliary Pancreat Dis Int HBPD INT. 2010; 9 (4): 398-401.
56. Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases. Transl Res J Lab Clin Med. 2017; 179: 38-48. [DOI:10.1016/j.trsl.2016.06.002]
57. Park B, Lee HR, Lee YJ. Alcoholic liver disease: focus on prodromal gut health. J Dig Dis. 2016; 17 (8): 493-500. [DOI:10.1111/1751-2980.12375]
58. Spiller R. Irritable bowel syndrome: new insights into symptom mechanisms and advances in treatment. F1000Research. 2016; 5: F1000 Faculty Rev-780. [DOI:10.12688/f1000research.7992.1]
59. Husebye E. The pathogenesis of gastrointestinal bacterial overgrowth. Chemotherapy. 2005; 1: 1-22. [DOI:10.1159/000081988]
60. Tao X, Wang N, Qin W. Gut Microbiota and Hepatocellular Carcinoma. Gastrointest Tumors. 2015; 2 (1): 33-40. [DOI:10.1159/000380895]
61. Zare-Bidaki M, Tsukiyama-Kohara K, Arababadi MK. Toll-like receptor 4 and hepatitis B infection: molecular mechanisms and pathogenesis. Viral Immunol. 2014; 27 (7): 321-6. [DOI:10.1089/vim.2014.0039]
62. Allen AM, Kim WR, Larson J, Loftus EV. Efficacy and safety of treatment of hepatitis C in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013; 11 (12): 1655-1660. [DOI:10.1016/j.cgh.2013.07.014]
63. Loras C, Saro C, Gonzalez-Huix F, Mínguez M, Merino O, Gisbert JP, et al. Prevalence and factors related to hepatitis B and C in inflammatory bowel disease patients in Spain: a nationwide, multicenter study. Am J Gastroenterol. 2009; 104 (1): 57-63. [DOI:10.1038/ajg.2008.4]
64. Bansal A, Singh MP, Rai B. Human papillomavirus-associated cancers: A growing global problem. Int J Appl Basic Med Res. 2016; 6 (2): 84-9. [DOI:10.4103/2229-516X.179027]
65. Hemmat N, Bannazadeh Baghi H. Association of human papillomavirus infection and inflammation in cervical cancer. Pathog Dis. 2019; 77 (5): ftz048. [DOI:10.1093/femspd/ftz048]
66. Spurgeon ME, den Boon JA, Horswill M, Barthakur S, Forouzan O, Rader JS, et al. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc Natl Acad Sci U S A. 2017; 114 (43): E9076-85. [DOI:10.1073/pnas.1712018114]
67. FERNANDES JV, DE MEDEIROS FERNANDES TAA, DE AZEVEDO JCV, COBUCCI RNO, DE CARVALHO MGF, ANDRADE VS, et al. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett. 2015; 9 (3): 1015-26. [DOI:10.3892/ol.2015.2884]
68. Fakhraei F, Haghshenas MR, Hosseini V, Rafiei A, Naghshvar F, Alizadeh-Navaei R. Detection of human papillomavirus DNA in gastric carcinoma specimens in a high-risk region of Iran. Biomed Rep. 2016; 5 (3): 371-5. [DOI:10.3892/br.2016.728]
69. Zhandossov O, Kaussova G, Koten A. Combined treatment for gastric cancer: Immunological approach. Turk J Gastroenterol. 2018; 29 (2): 151-6. [DOI:10.5152/tjg.2018.17398]
70. Segal JP, Askari A, Clark SK, Hart AL, Faiz OD. The Incidence and Prevalence of Human Papilloma Virus-associated Cancers in IBD. Inflamm Bowel Dis. 2021; 27 (1): 34-9. [DOI:10.1093/ibd/izaa035]
71. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and Cancer. Ann Afr Med. 2019; 18 (3): 121-6. [DOI:10.4103/aam.aam_56_18]
72. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9 (6): 7204-18. [DOI:10.18632/oncotarget.23208]
73. Liu X, Ma X, Lei Z, Feng H, Wang S, Cen X, et al. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis. PLoS ONE. 2015; 10 (7): e0133681. [DOI:10.1371/journal.pone.0133681]
74. Adefuye A, Sales K. Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix. Scientifica. 2012; 2012: 548150. [DOI:10.6064/2012/548150]
75. Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. 2015; 14: 87. [DOI:10.1186/s12943-015-0361-x]
76. Alkharsah KR. VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci. 2018; 19 (6): 1642. [DOI:10.3390/ijms19061642]
77. Saribas AS, Ozdemir A, Lam C, Safak M. JC virus-induced Progressive Multifocal Leukoencephalopathy. Future Virol. 2010; 5 (3): 313-23. [DOI:10.2217/fvl.10.12]
78. Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci. 2020; 21 (17): E6236. [DOI:10.3390/ijms21176236]
79. Izi S, Youssefi M, Rahmani F, Roshan NM, Yari A, Avval FZ. Detection of JC Polyomavirus tumor antigen in gastric carcinoma: a report from Iran. Iran J Microbiol. 2018; 10 (4): 266-74.
80. Tan CS, Koralnik IJ. Beyond progressive multifocal leukoencephalopathy: expanded pathogenesis of JC virus infection in the central nervous system. Lancet Neurol. 2010; 9 (4): 425-37. [DOI:10.1016/S1474-4422(10)70040-5]
81. Vanchiere JA, Nicome RK, Greer JM, Demmler GJ, Butel JS. Frequent Detection of Polyomaviruses in Stool Samples from Hospitalized Children. J Infect Dis. 2005; 192 (4): 658-64. [DOI:10.1086/432076]
82. Maginnis MS, Atwood WJ. JC virus: an oncogenic virus in animals and humans? Semin Cancer Biol. 2009; 19 (4): 261-9. [DOI:10.1016/j.semcancer.2009.02.013]
83. Bookstaver PB, Mohorn PL, Shah A, Tesh LD, Quidley AM, Kothari R, et al. Management of Viral Central Nervous System Infections: A Primer for Clinicians. J Cent Nerv Syst Dis. 2017; 9: 1179573517703342. [DOI:10.1177/1179573517703342]
84. Bauer J, Gold R, Adams O, Lassmann H. Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS). Acta Neuropathol (Berl). 2015; 130 (6): 751-64. [DOI:10.1007/s00401-015-1471-7]
85. Viscidi RP, Rollison DEM, Viscidi E, Clayman B, Rubalcaba E, Daniel R, et al. Serological cross-reactivities between antibodies to simian virus 40, BK virus, and JC virus assessed by virus-like-particle-based enzyme immunoassays. Clin Diagn Lab Immunol. 2003; 10 (2): 278-85. [DOI:10.1128/CDLI.10.2.278-285.2003]
86. Noch E, Sariyer IK, Gordon J, Khalili K. JC virus T-antigen regulates glucose metabolic pathways in brain tumor cells. PloS One. 2012; 7 (4): e35054. [DOI:10.1371/journal.pone.0035054]
87. Ozaki T, Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers. 2011; 3 (1): 994-1013. [DOI:10.3390/cancers3010994]
88. Khalili K, Sariyer IK, Safak M. Small Tumor Antigen of Polyomaviruses: Role in Viral Life Cycle and Cell Transformation. J Cell Physiol. 2008; 215 (2): 309-19. [DOI:10.1002/jcp.21326]
89. Caracciolo V, Reiss K, Khalili K, De Falco G, Giordano A. Role of the interaction between large T antigen and Rb family members in the oncogenicity of JC virus. Oncogene. 2006; 25 (38): 5294-301. [DOI:10.1038/sj.onc.1209681]
90. Serlin MH, Dieterich D. Gastrointestinal Disorders in HIV. Glob HIVAIDS Med. 2008; 251-60. [DOI:10.1016/B978-1-4160-2882-6.50027-7]
91. Jung AC, Paauw DS. Diagnosing HIV-Related Disease. J Gen Intern Med. 1998; 13 (2): 131-6. [DOI:10.1046/j.1525-1497.1998.00031.x]
92. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006; 12 (12): 1365-71. [DOI:10.1038/nm1511]
93. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017; 151 (4): 363-74. [DOI:10.1111/imm.12760]
94. Ye-Ting Z, Dao-Ming T. Systemic Inflammatory Response Syndrome (SIRS) and the Pattern and Risk of Sepsis Following Gastrointestinal Perforation. Med Sci Monit Int Med J Exp Clin Res. 2018; 24: 3888-94. [DOI:10.12659/MSM.907922]
95. Deeks SG, Tracy R, Douek DC. Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity. 2013; 39 (4): 633-45. [DOI:10.1016/j.immuni.2013.10.001]
96. Di Paolo NC, Shayakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol. 2016; 17 (8): 906-13. [DOI:10.1038/ni.3503]
97. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020; 80 (6): 607-13. [DOI:10.1016/j.jinf.2020.03.037]
98. Morse CG, Dodd LE, Nghiem K, Costello R, Csako G, Lane HC, et al. Elevations in D-dimer and C-reactive protein are associated with the development of osteonecrosis of the hip in HIV-infected adults. AIDS Lond Engl. 2013; 27 (4): 591-5. [DOI:10.1097/QAD.0b013e32835c206a]
99. Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA. Spectrum of cancer risk among HIV-infected people in the United States during the modern antiretroviral therapy era: a population-based registry linkage study. Lancet HIV. 2017; 4 (11): e495-504. [DOI:10.1016/S2352-3018(17)30125-X]
100. Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019; 9 :713. [DOI:10.3389/fonc.2019.00713]
101. Banerjee S, Lu J, Cai Q, Sun Z, Jha HC, Robertson ES. EBNA3C augments Pim-1 mediated phosphorylation and degradation of p21 to promote B-cell proliferation. PLoS Pathog. 2014; 10 (8): e1004304. [DOI:10.1371/journal.ppat.1004304]
102. Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol. 2015; 388 (2): 207-24. [DOI:10.1007/s00210-014-1043-8]
103. Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol. 2016; 7:585. [DOI:10.3389/fmicb.2016.00585]
104. Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, et al. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 1). Cancers. 2021; 13 (18): 4578. [DOI:10.3390/cancers13184578]
105. Ryan JL, Shen YJ, Morgan DR, Thorne LB, Kenney SC, Dominguez RL, et al. Epstein-Barr Virus Infection is Common in Inflamed Gastrointestinal Mucosa. Dig Dis Sci. 2012; 57 (7): 1887-98. [DOI:10.1007/s10620-012-2116-5]
106. Kerr JR. Epstein-Barr Virus Induced Gene-2 Upregulation Identifies a Particular Subtype of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Front Pediatr. 2019; 7: 59. [DOI:10.3389/fped.2019.00059]
107. Morales-Sánchez A, Torres J, Cardenas-Mondragón MG, Romo-González C, Camorlinga-Ponce M, Flores-Luna L, et al. Detection of Epstein-Barr Virus DNA in Gastric Biopsies of Pediatric Patients with Dyspepsia. Pathogens. 2020; 9 (8): 623. [DOI:10.3390/pathogens9080623]
108. Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R, et al. Outlooks on Ebstein-Barr Virus Associated Gastric Cancer. Cancer Treat Rev. 2018; 66: 15-22. [DOI:10.1016/j.ctrv.2018.03.006]
109. Chang WJ, Du Y, Zhao X, Ma LY, Cao GW. Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol WJG. 2014; 20 (16): 4586-96. [DOI:10.3748/wjg.v20.i16.4586]
110. Yanai H, Shimizu N, Nagasaki S, Mitani N, Okita K. Epstein-Barr virus infection of the colon with inflammatory bowel disease. Am J Gastroenterol. 1999; 94 (6): 1582-6. [DOI:10.1111/j.1572-0241.1999.01148.x]
111. Wakefield AJ, Fox JD, Sawyerr AM, Taylor JE, Sweenie CH, Smith M, et al. Detection of herpesvirus DNA in the large intestine of patients with ulcerative colitis and Crohn's disease using the nested polymerase chain reaction. J Med Virol. 1992; 38 (3): 183-90. [DOI:10.1002/jmv.1890380306]
112. Wu S, He C, Tang TY, Li YQ. A review on co-existent Epstein-Barr virus-induced complications in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2019; 31 (9): 1085-91. [DOI:10.1097/MEG.0000000000001474]
113. Kondapi DS, Ramani S, Estes MK, Atmar RL, Okhuysen PC. Norovirus in Cancer Patients: A Review. Open Forum Infect Dis. 2021; 8 (6): ofab126. [DOI:10.1093/ofid/ofab126]
114. Rayani A, Bode U, Habas E, Fleischhack G, Engelhart S, Exner M, et al. Rotavirus infections in paediatric oncology patients: a matched-pairs analysis. Scand J Gastroenterol. 2007; 42 (1): 81-7. [DOI:10.1080/00365520600842179]
115. Hargest V, Bub T, Neale G, Schultz-Cherry S. Astrovirus-induced epithelial-mesenchymal transition via activated TGF-β increases viral replication. PLoS Pathog. 2022; 18 (4): e1009716. [DOI:10.1371/journal.ppat.1009716]
116. Yang Y, Jiang Z, Wu W, Ruan L, Yu C, Xi Y, et al. Chronic Hepatitis Virus Infection Are Associated With High Risk of Gastric Cancer: A Systematic Review and Cumulative Analysis. Front Oncol. 2021; 11. [DOI:10.3389/fonc.2021.703558]
117. Snietura M, Waniczek D, Piglowski W, Kopec A, Nowakowska-Zajdel E, Lorenc Z, et al. Potential role of human papilloma virus in the pathogenesis of gastric cancer. World J Gastroenterol WJG. 2014; 20 (21): 6632-7. [DOI:10.3748/wjg.v20.i21.6632]
118. Jensen BEO, Oette M, Haes J, Häussinger D. HIV-Associated Gastrointestinal Cancer. Oncol Res Treat. 2017; 40 (3): 115-8. [DOI:10.1159/000456714]
119. Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, et al. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol. 2020; 10. [DOI:10.3389/fonc.2020.583463]
120. Grohmann GS, Glass RI, Pereira HG, Monroe SS, Hightower AW, Weber R, et al. Enteric viruses and diarrhea in HIV-infected patients. Enteric Opportunistic Infections Working Group. N Engl J Med. 1993; 329 (1): 14-20. [DOI:10.1056/NEJM199307013290103]
121. Velázquez RF, Linhares AC, Muñoz S, Seron P, Lorca P, DeAntonio R, et al. Efficacy, safety and effectiveness of licensed rotavirus vaccines: a systematic review and meta-analysis for Latin America and the Caribbean. BMC Pediatr. 2017; 17:14. [DOI:10.1186/s12887-016-0771-y]
122. Ykema M, Tao YJ. Structural Insights into the Human Astrovirus Capsid. Viruses. 2021; 13 (5): 821. [DOI:10.3390/v13050821]
123. Hargest V, Sharp B, Livingston B, Cortez V, Schultz-Cherry S. Astrovirus Replication Is Inhibited by Nitazoxanide In Vitro and In Vivo. J Virol. 2020; 94 (5) e01706-19. [DOI:10.1128/JVI.01706-19]
124. Dang W, Xu L, Ma B, Chen S, Yin Y, Chang KO, et al. Nitazoxanide Inhibits Human Norovirus Replication and Synergizes with Ribavirin by Activation of Cellular Antiviral Response. Antimicrob Agents Chemother. 2018; 62 (11): e00707-18. [DOI:10.1128/AAC.00707-18]
125. Kaufman SS, Green KY, Korba BE. Treatment of norovirus infections: Moving antivirals from the bench to the bedside. Antiviral Res. 2014; 105: 80-91. [DOI:10.1016/j.antiviral.2014.02.012]
126. Mastrangelo E, Mazzitelli S, Fabbri J, Rohayem J, Ruokolainen J, Nykänen A, et al. Delivery of suramin as an antiviral agent through liposomal systems. ChemMedChem. 2014; 9 (5): 933-9. [DOI:10.1002/cmdc.201300563]
127. Dou D, Mandadapu SR, Alliston KR, Kim Y, Chang KO, Groutas WC. Cyclosulfamide-based derivatives as inhibitors of noroviruses. Eur J Med Chem. 2012; 47 (1): 59-64. [DOI:10.1016/j.ejmech.2011.10.019]
128. Takahashi D, Kim Y, Lovell S, Prakash O, Groutas WC, Chang KO. Structural and Inhibitor Studies of Norovirus 3C-like Proteases. Virus Res. 2013; 178 (2): 10. [DOI:10.1016/j.virusres.2013.09.008]
129. Dang W, Xu L, Yin Y, Chen S, Wang W, Hakim MS, et al. IRF-1, RIG-I and MDA5 display potent antiviral activities against norovirus coordinately induced by different types of interferons. Antiviral Res. 2018; 155: 48-59. [DOI:10.1016/j.antiviral.2018.05.004]
130. Yen C, Tate JE, Hyde TB, Cortese MM, Lopman BA, Jiang B, et al. Rotavirus vaccines. Hum Vaccines Immunother. 2014; 10 (6): 1436-48. [DOI:10.4161/hv.28857]
131. Charlton M, Everson GT, Flamm SL, Kumar P, Landis C, Brown RS, et al. Ledipasvir and Sofosbuvir Plus Ribavirin for Treatment of HCV Infection in Patients With Advanced Liver Disease. Gastroenterology. 2015; 149 (3): 649-59. [DOI:10.1053/j.gastro.2015.05.010]
132. Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag. 2008; 4 (5): 1023-33. [DOI:10.2147/TCRM.S3285]
133. Antoniou T, Szadkowski L, Walmsley S, Cooper C, Burchell AN, Bayoumi AM, et al. Comparison of atazanavir/ritonavir and darunavir/ritonavir based antiretroviral therapy for antiretroviral naïve patients. BMC Infect Dis. 2017; 17: 266. [DOI:10.1186/s12879-017-2379-8]
134. Meng Q, Hagemeier SR, Fingeroth JD, Gershburg E, Pagano JS, Kenney SC. The Epstein-Barr Virus (EBV)-Encoded Protein Kinase, EBV-PK, but Not the Thymidine Kinase (EBV-TK), Is Required for Ganciclovir and Acyclovir Inhibition of Lytic Viral Production. J Virol. 2010; 84 (9): 4534-42. [DOI:10.1128/JVI.02487-09]
135. Xie T, Liu Y, Zhang Z, Zhang X, Gong J, Qi C, et al. Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. J Immunother Hagerstown Md 1997. 2020; 43 (4): 139-44. [DOI:10.1097/CJI.0000000000000316]
136. Gao P, Lazare C, Cao C, Meng Y, Wu P, Zhi W, et al. Immune checkpoint inhibitors in the treatment of virus-associated cancers. J Hematol OncolJ Hematol Oncol. 2019; 12: 58. [DOI:10.1186/s13045-019-0743-4]
137. Brar G, Shah MA. The role of pembrolizumab in the treatment of PD-L1 expressing gastric and gastroesophageal junction adenocarcinoma. Ther Adv Gastroenterol. 2019; 12: 1756284819869767. [DOI:10.1177/1756284819869767]
138. Chakraborty J, Banerjee S, Ray P, Hossain DMS, Bhattacharyya S, Adhikary A, et al. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem. 2010; 285 (43): 33104-12. [DOI:10.1074/jbc.M110.122705]
139. Ray P, Guha D, Chakraborty J, Banerjee S, Adhikary A, Chakraborty S, et al. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep. 2016; 6: 32979. [DOI:10.1038/srep32979]
140. Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, Banerjee S, et al. Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis Int J Program Cell Death. 2008; 13 (6): 771-81. [DOI:10.1007/s10495-008-0213-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.