Volume 10, Issue 4 (12-2022)                   JoMMID 2022, 10(4): 199-203 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esalatmanesh R, Sharif M R, Esalatmanesh K, Heidari S, Soleimani Z. Evaluation of Serum Interleukin-17, Transforming Growth Factor-beta Levels in Brucellosis Patients Before and After Treatment. JoMMID 2022; 10 (4) :199-203
URL: http://jommid.pasteur.ac.ir/article-1-424-en.html
Infections Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
Abstract:   (343 Views)
Introduction: Brucellosis is a zoonotic disease in humans and animals and is a worldwide public health problem. Changes in inflammatory cytokines levels might be deployed as markers for diagnosing infectious diseases from non-infectious medical conditions. This study aimed to evaluate the relationship between serum levels of interleukin-17 (IL-17) and transforming growth factor-beta (TGF-β) in pediatric brucellosis. Methods: The present case-control study included 40 brucellosis patients and 40 matched healthy controls. Serum levels of inflammatory cytokines were measured by ELISA, and the independent student t-test was used to compare the levels in the brucellosis and healthy group. Serum cytokine levels before and after treatment were compared by the paired samples t-test. Results: The serum TGF-β level was significantly lower in the patients compared to the control group (90.21 ± 24.44 vs. 125.63 ± 23.28 pg/mL, P<0.nv001), and the serum interleukin-17 level was significantly higher in the case group (83.74 ± 23.57 vs. 25.95 ± 17.80 pg/ml, P<0.001). After treatment, serum IL-17 levels significantly decreased in the case group. Conclusion: In brucellosis patients, the serum IL-17 levels decreased significantly, whereas TGF-β increased significantly in these patients. Hence, the serum levels of these inflammatory cytokines can be indicators for diagnosing pediatric brucellosis.
Full-Text [PDF 704 kb]   (131 Downloads)    
Type of Study: Original article | Subject: Infectious diseases and public health
Received: 2021/11/1 | Accepted: 2022/12/10 | Published: 2022/12/31

1. Pappas G, Memish ZA. Brucellosis in the Middle East: a persistent medical, socioeconomic and political issue. J Chemo. 2007; 19 (3): 243-8. [DOI:10.1179/joc.2007.19.3.243]
2. Ahmed K, Al-Matrouk KA, Martinez G, Oishi K, Rotimi VO, Nagatake T. Increased serum levels of interferon-gamma and interleukin-12 during human brucellosis. Am J Trop Med Hyg. 1999; 61 (3): 425-7. [DOI:10.4269/ajtmh.1999.61.425]
3. Von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev. 2012; 36 (3): 533-62. [DOI:10.1111/j.1574-6976.2012.00334.x]
4. Eskandari-Nasab E, Moghadampour M, Hasani SS, Hadadi-fishani M, Mirghanizadeh-Bafghi SA, Asadi-Saghandi A, et al. Relationship between gamma-interferon gene polymorphisms and susceptibility to brucellosis infection. Microbiol Immunol. 2013; 57 (11): 785-91. [DOI:10.1111/1348-0421.12093]
5. Sofian M, Aghakhani A, Banifazl M, Eslamifar A, Zolfaghari F, Sarmadian H, et al. Differentiation of Brucella-induced epididymo-orchitis from nonspecific epididymo-orchitis in an endemic area for brucellosis. J Med Microbiol Infect Dis. 2013; 1 (1): 8-13.
6. Farahani S, Shah Mohamadi S, Navidi I, Sofian M. An investigation of the epidemiology of brucellosis in Arak City, Iran,(2001-2010). J Arak Uni Med Sci. 2012; 14 (7): 49-54.
7. Araj GF. Human Brucellosis and Its Complications. Neurobrucellosis: Springer; 2016. p. 7-12. [DOI:10.1007/978-3-319-24639-0_2]
8. Demirdag K, Ozden M, Kalkan A, Godekmerdan A, Kilic SS. Serum cytokine levels in patients with acute brucellosis and their relation to the traditional inflammatory markers. FEMS Immunol Med Microbiol. 2003; 39 (2):149-53. [DOI:10.1016/S0928-8244(03)00207-4]
9. Lambert SD. Serologic Assessment of Antigenic Type-V and other Outer Membrane Proteins from Brucella Species as Differential Diagnostic Targets for Brucellosis. 2017.
10. Orozco G, Sanchez E, Lopez-Nevot MA, Caballero A, Bravo MJ, Morata P, et al. Inducible nitric oxide synthase promoter polymorphism in human brucellosis. Microbes Infect. 2003; 5 (13): 1165-9. [DOI:10.1016/j.micinf.2003.08.010]
11. Bravo MJ, Colmenero JD, Queipo-Ortuno MI, Alonso A, Caballero A. TGF-beta1 and IL-6 gene polymorphism in Spanish brucellosis patients. Cytokine. 2008; 44 (1): 18-21 [DOI:10.1016/j.cyto.2008.07.008]
12. Zeinali M, Shirzadi M, Sharifian J. National guideline for brucellosis control. Tehran: Ministry of Health and Medical Education. 2009. pp:10-7.
13. Kehrl JH. Transforming growth factor-beta: an important mediator of immunoregulation. Int J Cell Cloning. 1991; 9 (5): 438-50. [DOI:10.1002/stem.1991.5530090502]
14. Rafiei A, Hajilooi M, Shakib RJ, Alavi SA. Transforming growth factor-beta1 polymorphisms in patients with brucellosis: an association between codon 10 and 25 polymorphisms and brucellosis. Clin Microbiol Infect. 2007; 13 (1): 97-100. [DOI:10.1111/j.1469-0691.2006.01575.x]
15. Budak F, Goral G, Heper Y, Yilmaz E, Aymak F, Basturk B, et al. IL-10 and IL-6 gene polymorphisms as potential host susceptibility factors in Brucellosis. Cytokine. 2007; 38 (1): 32-6. [DOI:10.1016/j.cyto.2007.04.008]
16. Akbulut H, Celik I, Akbulut A. Cytokine levels in patients with brucellosis and their relations with the treatment. Indian J Med Microbiol. 2007; 25 (4): 387-90. [DOI:10.1016/S0255-0857(21)02057-0]
17. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010; 129 (3): 311-21. [DOI:10.1111/j.1365-2567.2009.03240.x]
18. Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Sigal. 2013; 25 (12): 2335-47. [DOI:10.1016/j.cellsig.2013.07.021]
19. Clapp B, Skyberg JA, Yang X, Thornburg T, Walters N, Pascual DW. Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun. 2011; 79 (10): 4165-74. [DOI:10.1128/IAI.05080-11]
20. Rasouli M, Asaei S, Kalani M, Kiany S, Moravej A. Interleukin-17A genetic variants can confer resistance to brucellosis in Iranian population. Cytokine. 2013; 61 (1): 297-303 [DOI:10.1016/j.cyto.2012.10.012]
21. Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, et al. The effector protein BPE005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 down-modulation via transforming growth factor β1 in hepatic stellate cells. Infect Immun. 2015; 84 (2): 598-606. [DOI:10.1128/IAI.01227-15]
22. Giambartolomei GH, Delpino MV. Immunopathogenesis of hepatic brucellosis. Front Cell Infect Microbiol. 2019; 9: 423. [DOI:10.3389/fcimb.2019.00423]
23. Pasquevich K.A, Ibañez A.E, Coria L.M, García Samartino C, Estein S.M, Zwerdling A, et al., An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS One. 2011; 6 (1): e16203. [DOI:10.1371/journal.pone.0016203]
24. Kchaou M, Belghith M, Bahrini K, Maghrebi O, Mekki N, Belal S, et al. IL-17 and IL-6 as Inflammatory Response in a Case of Neurobrucellosis Presenting as Leucoencephalopathy. Arch Clin Med Case Rep. 2019; 3 (5): 353-9. [DOI:10.26502/acmcr.96550104]
25. Keramat F, Kazemi S, Saidijam M, Zamani A, Kohan HF, Mamani M, et al. Association of interleukin‐17 gene polymorphisms and susceptibility to brucellosis in Hamadan, western Iran. Microbiol Immunol. 2019; 63 (3-4): 139-46. [DOI:10.1111/1348-0421.12675]
26. Zhang J. Research progress on the role of immune cells in Brucella infection. Infect Int. 2018; 7 (1): 23-7. [DOI:10.2478/ii-2018-0014]
27. Abkar M, Lotfi AS, Amani J, Eskandari K, Ramandi MF, Salimian J, et al. Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nano- particulation versus traditional immunization. Vet Res Commun. 2015; 39 (4): 217-28. [DOI:10.1007/s11259-015-9645-2]
28. Miyamoto M, Emoto M, Emoto Y, Brinkmann V, Yoshizawa I, Seiler P, et al. Neutrophilia in LFA-1-deficient mice confers resistance to listeriosis: possible contribution of granulocyte-colony-stimulating factor and IL-17. J Immunol. 2003; 170 (10): 5228-34. [DOI:10.4049/jimmunol.170.10.5228]
29. Bravo MJ, Colmenero JD, Queipo-Ortuno MI, Alonso A, Caballero A. TGF-beta1 and IL-6 gene polymorphism in Spanish brucellosis patients. Cytokine. 2008; 44: 18-21. [DOI:10.1016/j.cyto.2008.07.008]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.