Volume 12, Issue 1 (3-2024)                   JoMMID 2024, 12(1): 35-41 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan Shahryari M, Behzadi Andouhjerdi R, Hasan Shahriari M. Copper Nanoparticles Reduce Expression of Key Virulence Genes in Vaginal Candida albicans Infection: Implications for Novel Antifungal Therapies. JoMMID 2024; 12 (1) :35-41
URL: http://jommid.pasteur.ac.ir/article-1-417-en.html
Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract:   (196 Views)
Introduction: Vulvovaginal candidiasis (VVC) is a prevalent and often recurrent condition affecting an estimated 75% of women worldwide. Candida albicans is a primary fungal pathogen responsible for a significant proportion of VVC cases. This cross-sectional study investigated the expression levels of two critical virulence genes, ALS1 and HWP1, in C. albicans isolates from women diagnosed with VVC. Moreover, we examined the effect of copper nanoparticles on the expression of these genes, exploring their potential as a novel antifungal therapy for VVC treatment. Methods: This study recruited 30 patients diagnosed with VVC from Razi Hospital, Iran. We employed polymerase chain reaction (PCR) to confirm the presence of the ALS1 and HWP1 genes in C. albicans isolates. Subsequently, we extracted RNA from the isolates and assessed the effect of copper nanoparticles on the expression of ALS1 and HWP1 genes using quantitative real-time PCR (qRT-PCR). Results: Of the 30 C. albicans clinical isolates analyzed, 17 (56.7%) harbored both HWP1 and ALS1 virulence genes. Copper nanoparticles significantly downregulated the expression of these genes. Notably, treatment with 8.8 μg/mL copper nanoparticles resulted in a significant reduction of HWP1 gene expression, while 3.23 μg/mL copper nanoparticles led to a significant decrease in ALS1 gene expression. Conclusion: This study identified the presence of ALS1 and HWP1 virulence genes in C. albicans isolates from women with VVC and demonstrated the potential of copper nanoparticles to downregulate their expression. These findings offer promising insights into the development of novel antifungal therapies for VVC treatment. However, further investigations with larger, more diverse cohorts and comprehensive analyses are necessary to fully understand the effects of copper nanoparticles on C. albicans gene expression and their potential clinical applications for VVC management.
Full-Text [PDF 682 kb]   (63 Downloads)    
Type of Study: Original article | Subject: Host-pathogen interactions and susceptibility factors
Received: 2021/10/22 | Accepted: 2024/05/21 | Published: 2024/06/8

1. Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010; 89 (11): 1175-86. [DOI:10.1177/0022034510377794] [PMID]
2. Babić M, Hukić M. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women. Bosnian J Basic Med Sci. 2010; 10 (1): 89-97. [DOI:10.17305/bjbms.2010.2744] [PMID] []
3. Domán M, Kaszab E, Laczkó L, Bali K, Makrai L, Kovács R, et al. Genomic epidemiology of antifungal resistance in human and avian isolates of Candida albicans: a pilot study from the One Health perspective. Front Vet Sci. 2024: 11: 1345877. [DOI:10.3389/fvets.2024.1345877] [PMID] []
4. Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res. 2016; 5: 105. [DOI:10.4103/2277-9175.183666] [PMID] []
5. Ahmed MA, Goher H, Dwedar RA, Nassar Y, Nada MG, Kotb MM. A Comparative Study between Invasive and Superficial Candida albicans Infections Regarding Biofilm Formation, ALS3 and SAP1-6 Genes Expression and Anti-Fungal Drug Susceptibility. In Egypt J Med Microbiol. 2024; 33 (2): 1-9. [DOI:10.21608/ejmm.2024.338110]
6. Jafarzadeh M, Salouti M, Shokri R. Antifungal activity of silver nanoparticles, copper nanoparticles, their combination and with amphotericin b against Candida glabrata in vitro and in vivo. J Arak Uni Med Sci. 2017; 20 (123): 12-21.
7. Lange A, Matuszewsk, A, Kutwin M, Ostrowska A, Jaworski S. Farnesol and Selected Nanoparticles (Silver, Gold, Copper, and Zinc Oxide) as Effective Agents Against Biofilms Formed by Pathogenic Microorganisms. Nanotechnol Sci App. 2024: 17: 107-25. [DOI:10.2147/NSA.S457124] [PMID] []
8. Almotairy ARZ, Elwakil BH, El-Khatib M, Eldrieny AM. Chemically engineered nano selective silver shapes: Novel synthesis and their potential activity as anti-Candida agents. Colloids Surf A: Physicochem Eng. Asp. 2024; 688. [DOI:10.1016/j.colsurfa.2024.133538]
9. Haase A, Mantion A, Graf P, Plendl J, Thuenemann AF, Meier W, et al. A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems. Arch Toxicol. 2012; 86 (7): 1089-98. [DOI:10.1007/s00204-012-0836-0] [PMID]
10. Hashemi H, Varshosaz J, Fazeli H, Sharafi SM, Mirhendi H, Chadeganipour M, et al. Rapid differential diagnosis of vaginal infections using gold nanoparticles coated with specific antibodies. Med Microbiol Immunol. 2019; 208 (6): 773-80. [DOI:10.1007/s00430-019-00622-9] [PMID]
11. Palomo JM, Filice M. Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts. Nanomaterials. 2016; 6 (5): 84. [DOI:10.3390/nano6050084] [PMID] []
12. Alghofaily M, Alfraih J, Alsaud A, Almazrua N, Sumague TS, Auda SH, et al. The Effectiveness of Silver Nanoparticles Mixed with Calcium Hydroxide against Candida albicans: An Ex Vivo Analysis. Microorganisms. 2024; 12 (2): 289. [DOI:10.3390/microorganisms12020289] [PMID] []
13. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng. 2009; 3 (1): 9. [DOI:10.1186/1754-1611-3-9] [PMID] []
14. Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family a sticky pursuit. Med Mycol. 2008; 46 (1): 1-15. [DOI:10.1080/13693780701435317] [PMID] []
15. İnci M, Atalay MA, Özer B, Evirgen Ö, Duran N, Motor VK. Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turk J Med Sci. 2013; 43 (1): 125-130. [DOI:10.3906/sag-1205-90]
16. Foxman B, Muraglia R, Dietz J-P, Sobel JD, Wagner J. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an internet panel survey. J Low Genit Tract Dis. 2013; 17 (3): 340-5. [DOI:10.1097/LGT.0b013e318273e8cf] [PMID]
17. Jebali A, Hajjar FH, Pourdanesh F, Hekmatimoghadam S, Kazemi B, Masudi M, et al. Silver and gold nanostructures: antifungal property of different shapes of these nanostructures on Candida species. Med Mycol. 2014; 52 (1): 65-72. [DOI:10.3109/13693786.2013.822996] [PMID]
18. Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011; 49 (2): 171-7. [DOI:10.1007/s12275-011-1064-7] [PMID]
19. Nasrollahi A, Pourshamsian KH, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens. 2011; 1 (3): 233-9.
20. Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015; 69 (1): 71-92. [DOI:10.1146/annurev-micro-091014-104330] [PMID] []
21. Pakdel M, Zarrabi M, Asgarani E, Mohammadi P. Prediction of antigenic sites on ALS1 and HWP1 protein sequences in vaginal isolated C. albicans of using bioinformatics analysis. Iran J Med Microbiol. 2015; 1394 (1): 29-34.
22. Mancier V, Fattoum S, Haguet H, Laloy J, Maillet C, Gangloff SC, et al. Antifungal and Coagulation Properties of a Copper (I) Oxide Nanopowder Produced by Out-of-Phase Pulsed Sonoelectrochemistry. Antibiotics. 2024; 13 (3): 286. [DOI:10.3390/antibiotics13030286] [PMID] []
23. Rahimzadeh-Torabi L, Doudi M, Naghsh N, Golshani Z. Comparing the antifungal effects of gold and silver nanoparticles isolated from patients with vulvovaginal candidiasis in-vitro. Feyz. 2016; 20 (4): 331-9.
24. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed. 2010; 6 (5): 1085-94. [DOI:10.2147/IJN.S13532] [PMID] []
25. Runyoro DK, Ngassapa OD, Matee MI, Joseph CC, Moshi MJ. Medicinal plants used by Tanzanian traditional healers in the management of Candida infections. J Ethnopharmacol. 2006; 106 (2): 158-65. [DOI:10.1016/j.jep.2005.12.010] [PMID]
26. Soltani H, Salouti M, Shokri R. The antifungal effect of silver, copper nanoparticles, and their combination and in combination with amphotericin B against Candida albicans in vitro and in animal model. Qom Univ Med Sci J. 2018; 11 (12): 17-24.
27. Theivasanthi T, Alagar M. Studies of copper nanoparticles effects on micro-organisms. Scholars research library. Annals Biol Res. 2011; 2 (3): 368-73.
28. Vaughn VG, Weinberg ED. Candida albicans dimorphism and virulence: role of copper. Mycopathologia. 1978; 64 (1): 39-42. [DOI:10.1007/BF00443087] [PMID]
29. Faria-Gonçalves P, Rolo J, Gaspar C, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Virulence Factors as Promoters of Chronic Vulvovaginal Candidosis: A Review. Mycopathologia. 2021; 186 (6): 755-73. [DOI:10.1007/s11046-021-00592-8] [PMID]
30. do Carmo PHF, Garcia MT, Figueiredo-Godoi LMA, Lage ACP, da Silva NS, Junqueira JC. Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms. 2023; 11 (1): 138. [DOI:10.3390/microorganisms11010138] [PMID] []

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.