Volume 11, Issue 2 (6-2023)                   JoMMID 2023, 11(2): 96-102 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari M, Doosti A. Staphylococcus aureus enterotoxin type B (SEB) and alpha-toxin induced apoptosis in KB cell line. JoMMID 2023; 11 (2) :96-102
URL: http://jommid.pasteur.ac.ir/article-1-413-en.html
Shahrekord Branch, Islamic Azad University, Biotechnology Research Center, Shahrekord, Iran
Abstract:   (923 Views)
Introduction: According to global cancer statistics, oral cancer is the 11th most prevalent cancer worldwide. Despite the availability of numerous modern treatments for oral cancer, a complete reduction of mortality rates has not been achieved. Bacterial toxins have potential applications in inducing apoptosis or targeting tumor cells for destruction. The present study aimed to investigate the impact of Staphylococcus aureus seb and α-toxin genes on apoptotic-related gene mRNA expression, as well as apoptosis induction in KB cell lines, focusing on BAX, RB, BCL-2, and BAG-1 genes. Methods: The transfection of KB cells was performed using Lipofectamine 2000 to introduce pcDNA3.1 (+)-seb, pcDNA3.1 (+)-α-toxin, or an empty pcDNA3.1 (+) plasmid. The cells were cultured in DMEM supplemented with 10% FBS and 800 mg/L of G418 to select cells containing the plasmids. Subsequently, real-time RT-PCR was performed to measure the mRNA expression levels of BAX, RB, BCL-2, and BAG-1 genes. Cell apoptosis was assessed using Annexin V/PI staining and flow cytometry. Results: The seb and α-toxin significantly alter the expression of apoptotic-related genes in the KB cell line. In transfected KB cells, there was a significant increase in the mRNA expression of BAX and RB genes and a substantial decrease in the mRNA expression of BCL-2 and BAG-1 compared to the control group. Annexin test and flow cytometry analysis revealed that seb was more effective than α-toxin in inducing apoptosis. Conclusions: The seb and α-toxin genes of S. aureus exhibit an inhibitory effect on the growth, proliferation, and invasion of oral cancer cells by modulating gene expression in the apoptotic pathway. Hence, these toxins are promising for controlling and treating human oral cancer
Full-Text [PDF 1156 kb]   (538 Downloads)    
Type of Study: Original article | Subject: Other
Received: 2021/10/16 | Accepted: 2023/06/11 | Published: 2023/07/18

References
1. Shaikh AH, Muhammad T, Rasheed T. Evaluating the correlation between histopathological patterns of Oral Squamous Cell Carcinoma, age & site. Pak Oral Dental J. 2015; 35 (1): 30-2.
2. Gelažius R, Gervickas A, Kubilius R. Epidemiology of primary oral cancer diagnostics in Kaunas. Stomatologija. 2018; 20 (2): 49-53.
3. Ghantous Y, Abu Elnaaj I. global incidence and risk factors of oral cancer. Harefuah. 2017; 156 (10): 645-9.
4. Sultana J, Bashar A, Molla MR. New Management Strategies of Oral Tongue Cancer in Bangladesh. J Maxillofac Oral Surg. 2014; 13 (4): 394-400. [DOI:10.1007/s12663-013-0566-8] [PMID] [PMCID]
5. Solanki MC, Gandhi S, Koshy G, Mathew GC. Squamous cell carcinoma of maxilla in 10 year old boy: A rare case report. Int J Pediatr Otorhinolaryngol Extra. 2012; 7 (1): 33-5. [DOI:10.1016/j.pedex.2011.09.004]
6. Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R. Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pac J Cancer Prev. 2013; 14 (10): 5567-77. [DOI:10.7314/APJCP.2013.14.10.5567] [PMID]
7. Rao RS, Patil S, Ghosh S, Kumari K. Current aspects and future strategies in oral cancer research: A review. J Med Radiol Pathol Surg. 2015; 1 (3): 8-13. [DOI:10.15713/ins.jmrps.15]
8. Wong S, Slavcev RA. Treating cancer with infection: a review on bacterial cancer therapy. Lett Appl Microbiol. 2015; 61 (2): 107-12. [DOI:10.1111/lam.12436] [PMID]
9. Mohite PA, Surve DH, Karpe M, Kadam V. bacterial therapy: a novel approach for cancer treatment. World J Pharm Pharm Sci. 2015; 4 (3): 1386-97.
10. Weldon JE, Pastan I. A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J. 2011; 278 (23): 4683-700. [DOI:10.1111/j.1742-4658.2011.08182.x] [PMID] [PMCID]
11. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006; 26: 154-8.
12. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anticancer Drugs. 2016; 27 (4): 269-77. [DOI:10.1097/CAD.0000000000000337] [PMID] [PMCID]
13. Al-Ramadi BK, Chouaib S, Atteunated Bacteria as effective in cancer immunotherapy, Ann N Y Acad Sci. 2008; 1138 (1): 351-7. [DOI:10.1196/annals.1414.036] [PMID]
14. Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med. 2006; 4: 14. [DOI:10.1186/1479-5876-4-14] [PMID] [PMCID]
15. Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules. 2014; 19 (8): 11679-721. [DOI:10.3390/molecules190811679] [PMID] [PMCID]
16. Joo HS, Chatterjee SS, Villaruz AE, Dickey SW, Tan VY, Chen Y, et al. Mechanism of Gene Regulation by a Staphylococcus aureus Toxin. MBio. 2016; 7 (5): e01579-16. [DOI:10.1128/mBio.01579-16] [PMID] [PMCID]
17. Oliveira D, Borges A, Simões M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel). 2018; 10 (6): 252. [DOI:10.3390/toxins10060252] [PMID] [PMCID]
18. Bartlett AH, Hulten KG. Staphylococcus aureus pathogenesis: secretion systems, adhesins, and invasins. Pediatr Infect Dis J. 2010; 29 (9): 860-1. [DOI:10.1097/INF.0b013e3181ef2477] [PMID]
19. Bantel, H., Sinha, B., Domschke, W., Peters, G., Schulze-Osthoff, K., Janicke, R.U. alpha-toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol. 2001; 155 (4): 637-48. [DOI:10.1083/jcb.200105081] [PMID] [PMCID]
20. Haslinger B, Strangfeld K, Peters G, Schulze-Osthoff K, Sinha B. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell Microbiol. 2003; 5 (10): 729-41. [DOI:10.1046/j.1462-5822.2003.00317.x] [PMID]
21. Higgs BW, Dileo J, Chang WE, Smith HB, Peters OJ, Hammamieh R, et al. Modeling the effects of a Staphylococcal Enterotoxin B (SEB) on the apoptosis pathway. BMC Microbiol. 2006; 6: 48. [DOI:10.1186/1471-2180-6-48] [PMID] [PMCID]
22. Zhang X, Hu X, Rao X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol Res. 2017; 205: 19-24. [DOI:10.1016/j.micres.2017.08.006] [PMID]
23. Yang CY, Meng CL, van der Bijl P, Lee HK. The effect of betel nut extract on cell growth and prostaglandin endoperoxide synthase in human epidermoid carcinoma cells. Prostaglandins Other Lipid Mediat. 2002;67 (3-4): 181-95. [DOI:10.1016/S0090-6980(02)00002-3] [PMID]
24. Arshi A, Sharifi FS, Khorramian Ghahfarokhi M, Faghih Z, Doosti A, Ostovari S, et al. Expression Analysis of MALAT1, GAS5, SRA, and NEAT1 lncRNAs in Breast Cancer Tissues from Young Women and Women over 45 Years of Age. Mol Ther Nucleic Acids. 2018; 12: 751-7. [DOI:10.1016/j.omtn.2018.07.014] [PMID] [PMCID]
25. Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: A new tool for cancer therapy. Tumour Biol. 2017; 39 (2): 1010428317692226. [DOI:10.1177/1010428317692226] [PMID]
26. Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci. 2010; 17 (1): 21. [DOI:10.1186/1423-0127-17-21] [PMID] [PMCID]
27. Agheli R, Emkanian B, Halabian R, Fallah Mehrabadi J, Imani Fooladi AA. Recombinant Staphylococcal Enterotoxin Type A Stimulate Antitumoral Cytokines. Technol Cancer Res Treat. 2017; 16 (1): 125-32. [DOI:10.1177/1533034616679344] [PMID] [PMCID]
28. Oliveira D, Borges A, Simões M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel). 2018; 10 (6): 252. [DOI:10.3390/toxins10060252] [PMID] [PMCID]
29. Amiri M, Nasrollahi F, Barghi S, Ebrahimi N, Rajizadeh A, Dehghan Nayyeri N. The Effect of Ethanol Baneh Skin Extract on the Expressions of Bcl-2, BAX, and Caspase-3 Concentration in Human Prostate Cancer pc3 Cells. Int J Cancer Manag. 2018; 11 (3): e9865. [DOI:10.5812/ijcm.9865]
30. Sihombinga B, Syukurb S, Ibrahimc S, Hon Congd D, Setyoheryantoe D. Gene Expression of P53 and Bcl-2 as Markers of Prostate Cancer Progression. ASRJETS. 2017; 35 (1): 8-14.
31. Busbee PB, Nagarkatti M, Nagarkatti PS. Natural indoles, indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis. PLoS One. 2015; 10 (2): e0118506. [DOI:10.1371/journal.pone.0118506] [PMID] [PMCID]
32. Sakagami H. Apoptosis-inducing activity and tumor-specificity of antitumor agents against oral squamous cell carcinoma. Jpn Dent Sci Rev. 2010; 46 (2): 173-87. [DOI:10.1016/j.jdsr.2010.01.004]
33. Du W, Searle JS. The Rb Pathway and Cancer Therapeutics. Curr Drug Targets. 2009; 10 (7): 581-9. [DOI:10.2174/138945009788680392] [PMID] [PMCID]
34. Shindoh M, Adachi M, Higashino F, Yasuda M, Hida K, Nishioka T, et al. BAG-1 expression correlates highly with the malignant potential in early lesions (T1 and T2) of oral squamous cell carcinoma. Oral Oncol. 2000; 36 (5): 444-9. [DOI:10.1016/S1368-8375(00)00025-7] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.