Volume 9, Issue 4 (12-2021)                   JoMMID 2021, 9(4): 203-209 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bolourchi N, Azizi O, Rohani M, Seyyedi Abhari S, Soltani Shirazi A, Badmasti F. Identification of Carbapenemase within Class 1 Integron Structure in Intrinsically Colistin-resistant Enterobacteriaceae. JoMMID 2021; 9 (4) :203-209
URL: http://jommid.pasteur.ac.ir/article-1-399-en.html
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (1746 Views)
Introduction: Identification of carbapenem resistance genes in intrinsically colistin-resistant Enterobacteriaceae (ICRE), i.e., Proteus spp., Providencia spp., Serratia spp., and Morganella spp., is necessary for preventing such life-threatening bacteria. Here, we characterized carbapenemase resistance genes and their carriage within class 1 integron structures in clinical intrinsically colistin-resistant Enterobacteriaceae. Methods: Clinical samples were collected from six general hospitals in Tehran and Torbat-e-Heydarieh, Iran, from 2018 to 2020. The isolates were identified by standard microbiological techniques and 16s rRNA sequencing. The resistance to imipenem and colistin was determined by disk diffusion and minimum inhibitory concentration (MIC) assays. PCR-sequencing was performed to detect primary carbapenemase-encoding genes, including blaOXA-48, blaIMP, blaVIM, blaKPC, and blaNDM. Results: Three Proteus mirabilis, three Providencia stuartii, and two Serratia marcescens isolates were identified. The MICIMP values of all isolates were >16 µg/ml. The blaVIM-1 gene and blaKPC-2 genes were detected in five and four isolates, respectively. Cassette arrays consisting of blaVIM-1-aacA7-dhfrA1-aadA1were detected in five isolates and aadB in one isolate. The blaVIM-1 gene in all blaVIM-1 positive isolates was located on class 1 integrons, while the blaKPC-2 carriage was not related to these genetic elements. The in silico analysis of the large plasmids carrying blaVIM-1-aacA7-dhfrA1-aadA1 array belonging to the IncA/C incompatibility group showed transmissibility among Enterobacteriaceae members. Conclusions:  Transferable plasmid harboring blaVIM-1 in ICREs can pose a severe threat to public health. More investigations are required to depict the epidemiology of these underestimated carbapenem-resistant Enterobacteriaceae members.
Full-Text [PDF 1423 kb]   (845 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/09/22 | Accepted: 2021/12/10 | Published: 2021/12/28

References
1. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA. 2020; 6 (3): FSO438. [DOI:10.2144/fsoa-2019-0098]
2. Firmo EF, Beltrão EMB, da Silva FRF, Alves LC, Brayner FA, Veras DL, et al. Association of blaNDM-1 with blaKPC-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J Glob Antimicrob Resist. 2020; 21: 255-61. [DOI:10.1016/j.jgar.2019.08.026]
3. Park S-H, Kim J-S, Kim H-S, Yu J-K, Han S-H, Kang M-J, et al. Prevalence of Carbapenem-Resistant Enterobacteriaceae in Seoul, Korea. jbv. 2020; 50: 107-16. [DOI:10.4167/jbv.2020.50.2.107]
4. Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics. 2019; 8 (3): 122. [DOI:10.3390/antibiotics8030122]
5. Zhou C, Jin L, Wang Q, Wang X, Chen F, Gao Y, et al. Bloodstream Infections Caused by Carbapenem-Resistant Enterobacterales: Risk Factors for Mortality, Antimicrobial Therapy and Treatment Outcomes from a Prospective Multicenter Study. Infect Drug Resist. 2021; 14: 731-42. [DOI:10.2147/IDR.S294282]
6. Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, et al. Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China. Emerg Infect Dis. 2020; 26 (2): 289-97. [DOI:10.3201/eid2602.190594]
7. Brennan-Krohn T, Pironti A, Kirby JE. Synergistic Activity of Colistin-Containing Combinations against Colistin-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2018; 62 (10): e00873-18. [DOI:10.1128/AAC.00873-18]
8. Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019; 12: 965-75. [DOI:10.2147/IDR.S199844]
9. El-Sayed Ahmed MAE-G, Zhong L-L, Shen C, Yang Y, Doi Y, Tian G-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019). Emerging Microbes & Infections. 2020; 9 (1): 868-85. [DOI:10.1080/22221751.2020.1754133]
10. Schwaber MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: a potential threat. Jama. 2008; 300 (24): 2911-3. [DOI:10.1001/jama.2008.896]
11. van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013; 75 (2): 115-20. [DOI:10.1016/j.diagmicrobio.2012.11.009]
12. Juretschko S, Loy A, Lehner A, Wagner M. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Sys App Microbiol. 2002; 25 (1): 84-99. [DOI:10.1078/0723-2020-00093]
13. CLSI. Performance Standards for Antimicrobial Suseptibility Testing. In: Institute CLS, editor. 30th ed ed2020.
14. Azimirad M, Azizi O, Alebouyeh M, Aslani MM, Mousavi SF, Zali MR. Molecular analysis and genotyping of pathogenicity locus in Clostridioides difficile strains isolated from patients in Tehran hospitals during the years 2007-2010. Infect Genet Evol. 2019; 71: 205-10. [DOI:10.1016/j.meegid.2019.03.010]
15. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011; 70 (1): 119-23. [DOI:10.1016/j.diagmicrobio.2010.12.002]
16. Mirshekar M, Shahcheraghi F, Azizi O, Solgi H, Badmasti F. Diversity of class 1 integrons, and disruption of carO and dacD by insertion sequences among Acinetobacter baumannii isolates in Tehran, Iran. Microb Drug Resist. 2018; 24 (4): 359-66. [DOI:10.1089/mdr.2017.0152]
17. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 2019; 47 (D1): D195-D202. [DOI:10.1093/nar/gky1050]
18. Li X, Xie Y, Liu M, Tai C, Sun J, Deng Z, et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018; 46 (W1): W229-W34. [DOI:10.1093/nar/gky352]
19. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017; 45 (D1): D566-D73. [DOI:10.1093/nar/gkw1004]
20. Zafer MM, El-Mahallawy HA, Abdulhak A, Amin MA, Al-Agamy MH, Radwan HH. Emergence of colistin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli strains isolated from cancer patients. Ann Clin Microbiol Antimicrob. 2019; 18 (1): 40. [DOI:10.1186/s12941-019-0339-4]
21. Solgi H, Badmasti F, Aminzadeh Z, Giske C, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of blaNDM-7 and blaOXA-48. EJCMID. 2017; 36 (11): 2127-35. [DOI:10.1007/s10096-017-3035-3]
22. Douka E, Perivolioti E, Kraniotaki E, Fountoulis K, Economidou F, Tsakris A, et al. Emergence of a pandrug-resistant VIM-1-producing Providencia stuartii clonal strain causing an outbreak in a Greek intensive care unit. Int J Antimicrob Agent. 2015; 45 (5): 533-6. [DOI:10.1016/j.ijantimicag.2014.12.030]
23. Tibbetts R, Frye JG, Marschall J, Warren D, Dunne W. Detection of KPC-2 in a clinical isolate of Proteus mirabilis and first reported description of carbapenemase resistance caused by a KPC β-lactamase in P. mirabilis. J Clin Microbiol. 2008; 46 (9): 3080-3. [DOI:10.1128/JCM.00979-08]
24. Cabral AB, Maciel MAV, Barros JF, Antunes MM, Lopes ACS. Detection of bla KPC-2 in Proteus mirabilis in Brazil. Rev Soc Bras Med Trop. 2015; 48 (1): 94-5. [DOI:10.1590/0037-8682-0152-2014]
25. Shen P, Wei Z, Jiang Y, Du X, Ji S, Yu Y, et al. Novel genetic environment of the carbapenem-hydrolyzing β-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agent Chemother. 2009; 53 (10): 4333-8. [DOI:10.1128/AAC.00260-09]
26. Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol. 2020; 11: 256. [DOI:10.3389/fmicb.2020.00256]
27. Vourli S, Tsorlini H, Katsifa H, Polemis M, Tzouvelekis L, Kontodimou A, et al. Emergence of Proteus mirabilis carrying the blaVIM-1 metallo-β-lactamase gene. Clin Microbiol Infect. 2006; 12 (7): 691-4. [DOI:10.1111/j.1469-0691.2006.01489.x]
28. Bontron S, Poirel L, Kieffer N, Savov E, Trifonova A, Todorova I, et al. Increased Resistance to Carbapenems in Proteus mirabilis Mediated by Amplification of the bla(VIM-1)-Carrying and IS26-Associated Class 1 Integron. Microb Drug Resist. 2019; 25 (5): 663-7. [DOI:10.1089/mdr.2018.0365]
29. Abdallah M, Balshi A. First literature review of carbapenem-resistant Providencia. New Microbes New Infect. 2018; 25: 16-23. [DOI:10.1016/j.nmni.2018.05.009]
30. Iwata S, Tada T, Hishinuma T, Tohya M, Oshiro S, Kuwahara-Arai K, et al. Emergence of Carbapenem-Resistant Providencia rettgeriand Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan. Antimicrob Agent Chemother. 2020; 64 (11): e00382-20. [DOI:10.1128/AAC.00382-20]
31. Yang J-H, Sheng W-H, Hsueh P-R. Antimicrobial susceptibility and distribution of extended-spectrum β-lactamases, AmpC β-lactamases and carbapenemases among Proteus, Providencia and Morganella isolated from global hospitalised patients with intra-abdominal and urinary tract infections: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2008-2011. J Glob Antimicrob Resist. 2020; 22: 398-407. [DOI:10.1016/j.jgar.2020.04.011]
32. Zhang R, Zhou HW, Cai JC, Chen GX. Plasmid-mediated carbapenem-hydrolysing beta-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother. 2007;59 (3): 574-6. [DOI:10.1093/jac/dkl541]
33. Walters MS, Witwer M, Lee YK, Albrecht V, Lonsway D, Rasheed JK, et al. Notes from the Field: Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae from Less Common Enterobacteriaceae Genera - United States, 2014-2017. MMWR Morb Mortal Wkly Rep. 2018; 67 (23): 668-9. [DOI:10.15585/mmwr.mm6723a4]
34. Oikonomou O, Liakopoulos A, Phee LM, Betts J, Mevius D, Wareham DW. Providencia stuartii Isolates from Greece: Co-Carriage of Cephalosporin (blaSHV-5, blaVEB-1), Carbapenem (blaVIM-1), and Aminoglycoside (rmtB) Resistance Determinants by a Multidrug-Resistant Outbreak Clone. Microb Drug Resist. 2016; 22 (5): 379-86. [DOI:10.1089/mdr.2015.0215]
35. Markovska R, Schneider I, Keuleyan E, Ivanova D, Lesseva M, Stoeva T, et al. Dissemination of a Multidrug-Resistant VIM-1- and CMY-99-Producing Proteus mirabilis Clone in Bulgaria. Microbial Drug Resist. 2016; 23 (3): 345-50. [DOI:10.1089/mdr.2016.0026]
36. Papagiannitsis C, Miriagou V, Kotsakis S, Tzelepi E, Vatopoulos A, Petinaki E, et al. Characterization of a transmissible plasmid encoding VEB-1 and VIM-1 in Proteus mirabilis. Antimicrobi Agent Chemother. 2012; 56 (7): 4024-5. [DOI:10.1128/AAC.00470-12]
37. Österblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M, Jalava J. Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008-11). J Antimicrob Chemother. 2012; 67 (12): 2860-4. [DOI:10.1093/jac/dks299]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.