Volume 10, Issue 4 (12-2022)                   JoMMID 2022, 10(4): 186-191 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghili Amjad A, Niakan M, Sameni F, Bakhti S, Khaledi M, Afkhami H et al . The adeH and adeS Efflux Pump Genes in Imipenem and Colistin-Resistant Acinetobacter baumannii Clinical Isolates. JoMMID 2022; 10 (4) :186-191
URL: http://jommid.pasteur.ac.ir/article-1-396-en.html
Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
Abstract:   (359 Views)
Introduction: Acinetobacter baumannii is one of the most important causes of nosocomial infections. In this bacteria, several mechanisms contribute to resistance against antimicrobial agents. The present study investigated the prevalence of adeS and adeH genes and the role of efflux pumps in imipenem and colistin-resistant A. baumannii clinical isolates. Methods: This study included 60 A. baumannii isolates collected from medical centers affiliated with the Shahid Beheshti University of Medical Science, Tehran, Iran. The antibiotic susceptibility pattern was examined using the broth microdilution MIC method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Also, the adeS and adeH genes were amplified by PCR. Results: The isolates were 100% imipenem-resistant and 86.7% colistin-resistant. All isolates were positive for the 51-blaOXA gene. The adeH and adeS genes were detected in 95% and 80% of the isolates. Conclusion: The high frequency of adeS and adeH efflux pump genes and the high drug resistance in A. baumannii clinical isolates indicated that adeS and adeH efflux pump genes contribute to antibiotic resistance in this species. Therefore, our results provide essential information about high drug resistance in A. baumannii clinical isolates that can help limit the horizontal and vertical transmission of efflux pump genes in antibiotic-resistant A. baumannii isolates that causes nosocomial infections in susceptible strains.
Full-Text [PDF 681 kb]   (208 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/09/21 | Accepted: 2022/12/10 | Published: 2022/12/31

1. Ravi NS, Anandan S, Vijayakumar S, Gopi R, Lopes BS, Veeraraghavan B. The potential of different molecular biology methods in tracking clones of Acinetobacter baumannii in an ICU setting. J Med Microbiol . 2018; 67 (9): 1340-7. [DOI:10.1099/jmm.0.000797]
2. Basatian-Tashkan B, Niakan M, Khaledi M, Afkhami H, Sameni F, Bakhti S, et al. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Res Notes. 2020; 13 (1): 543. [DOI:10.1186/s13104-020-05387-6]
3. Nazari M, Youzbashi Z, Khaledi M, Fathi J, Afkhami H. Detection of carbapenem resistance and virulence genes among Acinetobacter baumannii isolated from hospital environments in center of Iran. J Curr Biomed Rep. 2021; 2 (1): 14. [DOI:10.52547/JCBioR.2.1.14]
4. Khaledi M, Abadi MSS, Validi M, Zamanzad B, Vafapour R, Gholipour A. Phenotypic and genotypic detection of metallo-β-lactamases in A. baumanii isolates obtained from clinical samples in Shahrekord, southwest Iran. BMC Res Notes. 2019; 12 (1): 1-6. [DOI:10.1186/s13104-019-4636-y]
5. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 2018; 16 (2): 91-102. [DOI:10.1038/nrmicro.2017.148]
6. Sameni F, Esmaeili A, Dabiri H, Azargun R, Goudarzi H, Mohammadzadeh A. Distribution of Integron Class I in Drug Resistant Pseudomonas aeruginosa Isolated from Clinical Samples. Res Med. 2020; 44 (1): 301-7.
7. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015; 45 (6): 568-85. [DOI:10.1016/j.ijantimicag.2015.03.001]
8. Hashemi B, Afkhami H, Khaledi M, Kiani M, Bialvaei AZ, Fathi J, et al. Frequency of Metalo beta Lactamase genes, bla IMP1, INT 1 in Acinetobacter baumanii isolated from burn patients North of Iran. Gene Rep. 2020; 21: 100800. [DOI:10.1016/j.genrep.2020.100800]
9. Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microbial genomics. 2018; 4 (3): e000165. [DOI:10.1099/mgen.0.000165]
10. Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant Gram-negative bacilli. Drugs. 2019; 79 (3): 271-89. [DOI:10.1007/s40265-019-1055-2]
11. Elbrolosy AM, Labeeb AZ, Hassan DM. New Delhi metallo-β-lactamase-producing Acinetobacter isolates among late-onset VaP patients: Multidrug-resistant pathogen and poor outcome. Infect Drug Resist. 2019; 12: 373-84. [DOI:10.2147/IDR.S186924]
12. Jiang L, Yu Y, Zeng W, Guo J, Lv F, Wang X, et al. Whole-genome analysis of New Delhi metallo-beta-lactamase-1-producing Acinetobacter haemolyticus from China. J Glob Antimicrob Resist. 2020; 20: 204-8. [DOI:10.1016/j.jgar.2019.05.012]
13. Patil HV, Mohite ST, Patil VC. Metallo-beta-lactamase-producing multidrug-pesistant acinetobacter isolates in patients with ventilator-associated pneumonia. J Nat Sci Biol. 2021; 12 (1): 64. [DOI:10.4103/jnsbm.JNSBM_54_20]
14. Rumbo C, Gato E, López M, de Alegría CR, Fernández-Cuenca F, Martínez-Martínez L, et al. Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013; 57 (11): 5247-57. [DOI:10.1128/AAC.00730-13]
15. Pagdepanichkit S, Tribuddharat C, Chuanchuen R. Distribution and expression of the Ade multidrug efflux systems in Acinetobacter baumannii clinical isolates. Can J Microbiol. 2016; 62 (9): 794-801. [DOI:10.1139/cjm-2015-0730]
16. Kaviani R, Pouladi I, Niakan M, Mirnejad R. Molecular Detection of Adefg Efflux Pump Genes and their Contribution to Antibiotic Resistance in Acinetobacter baumannii Clinical Isolates. Rep Biochem Mol Biol. 2020; 8 (4): 413-8.
17. Yoon E-J, Courvalin P, Grillot-Courvalin C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother. 2013; 57 (7): 2989-95. [DOI:10.1128/AAC.02556-12]
18. Webber M, Piddock L. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother. 2003; 51 (1): 9-11. [DOI:10.1093/jac/dkg050]
19. Sepahvand S, Davarpanah MA, Roudgari A, Bahador A, Karbasizade V, Jahromi ZK. Molecular evaluation of colistin-resistant gene expression changes in Acinetobacter baumannii with real-time polymerase chain reaction. Infect Drug Resist. 2017; 10: 455-62. [DOI:10.2147/IDR.S141196]
20. Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int J Clin Exp Med. 2015; 8 (8): 13859-63.
21. Lob S, Hackel M, Badal R, Young K, Motyl M, Sahm D, editors. Global Prevalence of colistin and carbapenem-resistant Gram-negative organisms: SMART 2015-2016. Open Forum Infect Dis; 2017. [DOI:10.1093/ofid/ofx163.232]
22. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3 (2): 163-75. [DOI:10.1038/nprot.2007.521]
23. Leu H-S, Ye J-J, Lee M-H, Su L-H, Huang P-Y, Wu T-L, et al. Synergy of imipenem/colistin methanesulfonate combinations against imipenem-nonsusceptible multidrug-resistant Acinetobacter baumannii. J Microbiol Immunol Infect. 2014; 47 (5): 406-11. [DOI:10.1016/j.jmii.2013.05.007]
24. Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011; 55 (3): 947-53. [DOI:10.1128/AAC.01388-10]
25. Yousefian R. Identification and frequency of colistin-resistant acintobacter baumanii in clinical isolates using polymerase chain reaction. J Isfahan Med Sch. 2014; 301: 1466-74.
26. Malekzadegan Y, Abdi A, Heidari H, Moradi M, Rastegar E, Ebrahim-Saraie HS. In vitro activities of colistin, imipenem and ceftazidime against drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates in the south of Iran. BMC Res Notes. 2019;12 (1): 301. [DOI:10.1186/s13104-019-4344-7]
27. Gholami M, Hashemi A, Hakemi-Vala M, Goudarzi H, Hallajzadeh M. Efflux pump inhibitor phenylalanine-arginine Β-naphthylamide effect on the minimum inhibitory concentration of imipenem in Acinetobacter baumannii strains isolated from hospitalized patients in Shahid Motahari burn hospital, Tehran, Iran. Jundishapur J Microbiol. 2015; 8 (10); e19048. [DOI:10.5812/jjm.19048]
28. Germ J, Poirel L, Kisek TC, Spik VC, Seme K, Premru MM, et al. Evaluation of resazurin-based rapid test to detect colistin resistance in Acinetobacter baumannii isolates. Eur J Clin Microbiol Infect Dis. 2019; 38 (11): 2159-62. [DOI:10.1007/s10096-019-03657-1]
29. Asadolah-Malayeri HO, Hakemi-Vala M, Davari K. Role of Aders and OXA23 genes among imipenem resistant Acinetobacter baumannii isolates from two hospitals of Tehran, Iran. Iran J Pathol. 2016; 11 (4): 345-53.
30. Angoti G, Bandehpour M, Goudarzi H, Hajizadeh M, Zarringhalam Moghaddam M, Kouchaki A. Detection of Efflux Pump Genes (adeA, adeB, adeC and abeM) in Acinetobacter baumannii Isolated from Hospitalize Patients, North-west of Iran. Infect epidemiol microbiol. 2016; 2 (4): 8-11. [DOI:10.18869/modares.iem.2.4.8]
31. Boral B, Unaldi Ö, Ergin A, Durmaz R, Eser ÖK. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumannii infections in intensive care units with clinical and environmental features. Ann Clin Microbiol Antimicrob. 2019; 18 (1): 19. [DOI:10.1186/s12941-019-0319-8]
32. Pu L, Jian Z, Pan F, Geng Y, He M, Liao P. Comparative genomic analysis and multi-drug resistance differences of Acinetobacter baumannii in Chongqing, China. Infect Drug Resist. 2019; 12: 2827-38. [DOI:10.2147/IDR.S216745]
33. Noori M, Mohsenzadeh B, Bahramian A, Shahi F, Mirzaei H, Khoshnood S. Characterization and frequency of antibiotic resistance related to membrane porin and efflux pump genes among Acinetobacter baumannii strains obtained from burn patients in Tehran, Iran. J Acute Dis. 2019; 8 (2): 63-6.
34. Nigro SJ, Hall RM. Antibiotic resistance islands in A320 (RUH134), the reference strain for Acinetobacter baumannii global clone 2. J Antimicrob Chemother. 2012; 67 (2): 335-8. [DOI:10.1093/jac/dkr447]
35. Feizabadi M, Fathollahzadeh B, Taherikalani M, Rasoolinejad M, Sadeghifard N, Aligholi M, et al. Antimicrobial susceptibility patterns and distribution of blaOXA genes among Acinetobacter spp. Isolated from patients at Tehran hospitals. Jpn J Infect Dis. 2008; 61 (4): 274-8.
36. Taherikalani M, Maleki A, Sadeghifard N, Mohammadzadeh D, Soroush S, Asadollahi P, et al. Dissemination of class 1, 2 and 3 integrons among different multidrug resistant isolates of Acinetobacter baumannii in Tehran hospitals, Iran. Iran Pol J Microbiol. 2011; 60 (2): 169-74. [DOI:10.33073/pjm-2011-024]
37. Beikmohammadi H, Viesy S, Kaviani R, Pouladi I. Detection of efflux pump genes conferring multidrug resistance in clinical isolates of Acinetobacter Baumannii in Tehran province. Rev Med Microbiol. 2022; 33 (1): 31-6. [DOI:10.1097/MRM.0000000000000255]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.