Volume 10, Issue 2 (6-2022)                   JoMMID 2022, 10(2): 80-86 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Goodarzi E, Kakavand M, Rashidi K, Mamdohi S, Momenabadi V, Navabi M, et al . Paraclinical Characteristics of Fatal and Recovered COVID-19 Cases: a Retrospective Study. JoMMID. 2022; 10 (2) :80-86
URL: http://jommid.pasteur.ac.ir/article-1-387-en.html
Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:   (146 Views)
Introduction: COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-Cov2). It is a potentially deadly disease with grave consequences for public and global health. This study compared laboratory indices in recovered and fatal COVID-19 cases. Methods: In this descriptive-analytical cross-sectional study, sampling was conducted using the total count method, and the data was collected from the Borujerd Health Network's Disease Management Center database. From February 20, 2020, to July 21, 2020, 380 patients with positive PCR tests were included. The extracted data was exported into Stata-14 software. To analyze descriptive objectives, mean, percentage, standard deviation, Chi-squared test, and t-test were used. Results: Out of 380 positive COVID-19 cases, 300 patients recovered, and 80 lost their life. More than half of the recovered and fatal cases were men (55.16%). The highest mortality rate belonged to 80 years (27.5%). Among fatal cases, 38.75% had no underlying disease, and the most common underlying diseases were diabetes (27.5%), chronic hypertension (18.75%), and malignancy (7.5%). Comparison of laboratory indices revealed a significant difference in the mean LHD, Na, K, BUN, BS, PT, AST, ALT, ALP, and ALP Hb between recovered and fatal cases (P <0.05). Conclusion: This finding can help determine patients' prognoses and adjust the treatment approach. Further studies on paraclinical characteristics will shed further light on the pathogenesis of COVID-19 and appropriate treatment measures.
Full-Text [PDF 1006 kb]   (73 Downloads)    
Type of Study: Original article | Subject: Infectious diseases and public health
Received: 2021/09/10 | Accepted: 2022/06/11 | Published: 2022/06/8

1. Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020; 7 (1): 4. [DOI:10.1186/s40779-020-0233-6]
2. Jin X, Lian J-S, Hu J-H, Gao J, Zheng L, Zhang Y-M, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1002-9. [DOI:10.1136/gutjnl-2020-320926]
3. Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus-a perspective. Expert Rev Clin Immunol. 2020; 16 (5): 465-70. [DOI:10.1080/1744666X.2020.1750954]
4. Tuite AR, Bogoch II, Sherbo R, Watts A, Fisman D, Khan K. Estimation of coronavirus disease 2019 (COVID-19) burden and potential for international dissemination of infection from Iran. Ann Intern Med. 2020; 172 (10): 699-701. [DOI:10.7326/M20-0696]
5. Rahmanian V, Rabiee MH, Sharifi H. Case fatality rate of coronavirus disease 2019 (COVID-19) in Iran-a term of caution. Asian Pac J Trop Dis. 2020; 13. [DOI:10.4103/1995-7645.281617]
6. Chen J. Pathogenicity and transmissibility of 2019-nCoV-a quick overview and comparison with other emerging viruses. Microbes Infect. 2020; 22 (2): 69-71. [DOI:10.1016/j.micinf.2020.01.004]
7. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8 (5):475-81. [DOI:10.1016/S2213-2600(20)30079-5]
8. Lew TW, Kwek T-K, Tai D, Earnest A, Loo S, Singh K, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. Jama. 2003;290 (3): 374-80. [DOI:10.1001/jama.290.3.374]
9. Peterson DD, Pack AI, Silage DA, Fishman AP. Effects of aging on ventilatory and occlusion pressure responses to hypoxia and hypercapnia. Am. Rev Respir Dis. 1981; 124 (4): 387-91.
10. Ely EW, Wheeler AP, Thompson BT, Ancukiewicz M, Steinberg KP, Bernard GR. Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann Intern Med. 2002; 136 (1): 25-36. [DOI:10.7326/0003-4819-136-1-200201010-00007]
11. Deng Y, Liu W, Liu K, Fang Y-Y, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J. 2020; 133 (11): 1261-7. [DOI:10.1097/CM9.0000000000000824]
12. Boyle AJ, Madotto F, Laffey JG, Bellani G, Pham T, Pesenti A, et al. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Crit Care. 2018; 22 (1): 1-14. [DOI:10.1186/s13054-018-2158-y]
13. Ji M, Chen M, Hong X, Chen T, Zhang N. The effect of diabetes on the risk and mortality of acute lung injury/acute respiratory distress syndrome: A meta-analysis. Medicine. 2019; 98 (13): e15095. [DOI:10.1097/MD.0000000000015095]
14. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846-8. [DOI:10.1007/s00134-020-05991-x]
15. Sun S, Cai X, Wang H, He G, Lin Y, Lu B, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020; 1 (2): 174-8. [DOI:10.1016/j.cca.2020.04.024]
16. Qian G-Q, Yang N-B, Ding F, Ma AHY, Wang Z-Y, Shen Y-F, et al. Epidemiologic and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. QJM. 2020; 113 (7): 474-81. [DOI:10.1093/qjmed/hcaa089]
17. Jamaati H, Dastan F, Tabarsi P, Marjani M, Saffaei A, Hashemian SM. A fourteen-day experience with coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS): an Iranian treatment protocol. Iran J Pharm Res. 2020; 19 (1): 31.-6
18. Zhang J-j, Dong X, Cao Y-y, Yuan Y-d, Yang Y-b, Yan Y-q, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020; 75 (7): 1730-41. [DOI:10.1111/all.14238]
19. Liu F, Xu A, Zhang Y, Xuan W, Yan T, Pan K, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020; 12 (5): 25. [DOI:10.1016/j.ijid.2020.03.013]
20. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020; 506: 145-8. [DOI:10.1016/j.cca.2020.03.022]
21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
22. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020; 368 (6494): 1016-20. [DOI:10.1126/science.abb7015]
23. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054-62. [DOI:10.1016/S0140-6736(20)30566-3]
24. Henry BM, De Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020; 58 (7): 1021-8. [DOI:10.1515/cclm-2020-0369]
25. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17 (5): 259-60. [DOI:10.1038/s41569-020-0360-5]
26. Porcheddu R, Serra C, Kelvin D, Kelvin N, Rubino S. Similarity in case fatality rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Ctries. 2020;14 (2): 125-8. [DOI:10.3855/jidc.12600]
27. Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID‐19. Am J Hematol. 2020; 95 (7): 834-7. [DOI:10.1002/ajh.25829]
28. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020; 323 (16): 1612-4. [DOI:10.1001/jama.2020.4326]
29. Frater JL, Zini G, d'Onofrio G, Rogers HJ. COVID‐19 and the clinical hematology laboratory. Int J Lab Hematol. 2020; 42 Suppl 1: 11-8. [DOI:10.1111/ijlh.13229]
30. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71 (15): 762-8. [DOI:10.1093/cid/ciaa248]
31. Zini G, Bellesi S, Ramundo F, d'Onofrio G. Morphological anomalies of circulating blood cells in COVID‐19. Am J Hematol. 2020; 95 (7): 870-2. [DOI:10.1002/ajh.25824]
32. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395 (10229): 1033-4. [DOI:10.1016/S0140-6736(20)30628-0]
33. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. 2020; 39 (5): 405-7. [DOI:10.1016/j.healun.2020.03.012]
34. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382 (18): 1708-20. [DOI:10.1056/NEJMoa2002032]
35. Kavsak PA, de Wit K, Worster A. Emerging key laboratory tests for patients with COVID-19. Clin Biochem. 2020; 81: 13-14. [DOI:10.1016/j.clinbiochem.2020.04.009]
36. Domingues R, Lippi A, Setz C, Outeiro TF, Krisko A. SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging (Albany NY). 2020; 12 (18): 18778-89. [DOI:10.18632/aging.103989]
37. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-9. [DOI:10.1001/jama.2020.1585]
38. Hemker HC, Giesen P, Al Dieri R, Regnault V, De Smedt E, Wagenvoord R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003; 33 (1): 4-15. [DOI:10.1159/000071636]
39. Lecut C, Peters P, Massion PB, Gothot A, editors. Is there a place for thrombin generation assay in routine clinical laboratory? Ann Biol Clin. 2015; 73 (2):137-49. [DOI:10.1684/abc.2014.1018]
40. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe COVID-19 with respiratory failure. N Engl J Med. 2020; 383 (16):1522-34. [DOI:10.1056/NEJMoa2020283]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.