Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 108-115 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lopes L R, da Silva junior A C, Bandiera-Paiva P, Casseb J. Global Variability of V3 Loop Tetrapeptide Motif: a Concern for HIV-1 Neutralizing Antibodies-based Vaccine Design and Antiretroviral Therapy. JoMMID 2021; 9 (3) :108-115
URL: http://jommid.pasteur.ac.ir/article-1-383-en.html
Bioinformatics and Bio-Data Science Division, Health Informatics Department, Universidade Federal de São Paulo–UNIFESP, São Paulo, SP, Brazil
Abstract:   (1562 Views)
Introduction: HIV-1 gp120 V3 GPGR motif has an essential role in viral invasion, cell fusion, and pathogenesis but presents a significant variability that can implicate neutralizing antibodies and antiretroviral drug resistance. Methods: We performed a comprehensive analysis based on 259,288 HIV-1 gp120 amino acid sequences obtained from the Los Alamos National Laboratory (LANL) HIV Sequence Database to infer the global distribution of V3 tetrapeptide motifs. We calculated the frequencies and presented the main variants according to continents and countries. Furthermore, the clinical importance of the most distributed V3 motifs was detailed. Results: Our results showed GPGR and GPGQ as the most commonly found V3 motifs among more than five hundred V3 variant motifs. Motifs with clinical implications are widely distributed around the world. Within the most frequent V3 tetrapeptide motifs set, some variants enable the escape from fusion inhibitor drugs and neutralizing antibodies. Conclusion: Considering that an effective vaccine candidate should elicit broadly neutralizing antibodies while fusion inhibitor drug interaction requires conserved amino acids, the diversity of V3 motifs implicates a great challenge in developing an effective HIV-1 vaccine.
Full-Text [PDF 3010 kb]   (835 Downloads)    
Type of Study: Short communication | Subject: Immune responses, deficiencies and vaccine candidates
Received: 2021/09/3 | Accepted: 2021/09/19 | Published: 2021/10/12

References
1. Santoro MM, Perno CF. HIV-1 Genetic Variability and Clinical Implications. ISRN Microbiol. 17; 2013: 481314. [DOI:10.1155/2013/481314]
2. Raghwani J, Redd AD, Longosz AF, Wu C-H, Serwadda D, Martens C, et al. Evolution of HIV-1 within untreated individuals and at the population scale in Uganda. PLoS Pathog. 2018; 14 (7): e1007167. [DOI:10.1371/journal.ppat.1007167]
3. Requejo HIZ. Worldwide molecular epidemiology of HIV. Rev Saude Publica. 2006; 40 (2): 331-45. [DOI:10.1590/S0034-89102006000200023]
4. Eberle J, Gürtler L. HIV types, groups, subtypes and recombinant forms: errors in replication, selection pressure and quasispecies. Intervirology. 2012; 55 (2): 79-83. [DOI:10.1159/000331993]
5. Hedskog C, Mild M, Jernberg J, Sherwood E, Bratt G, Leitner T, et al. Dynamics of HIV-1 quasispecies during antiviral treatment dissected using ultra-deep pyrosequencing. PloS One. 2010; 5 (7): e11345. [DOI:10.1371/journal.pone.0011345]
6. Bunnik EM, Euler Z, Welkers MRA, Boeser-Nunnink BDM, Grijsen ML, Prins JM, et al. Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level. Nat Med. 2010; 16 (9): 995-7. [DOI:10.1038/nm.2203]
7. Zuo L, Liu K, Liu H, Hu Y, Zhang Z, Qin J, et al. Trend of HIV-1 drug resistance in China: A systematic review and meta-analysis of data accumulated over 17 years (2001-2017). EClinicalMedicine. 2020; 18: 100238. [DOI:10.1016/j.eclinm.2019.100238]
8. Baldwin CE, Berkhout B. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein. Retrovirology. 2006; 3: 84. [DOI:10.1186/1742-4690-3-84]
9. Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson C, et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog. 2013; 9 (10): e1003738. [DOI:10.1371/journal.ppat.1003738]
10. Kovacs JM, Nkolola JP, Peng H, Cheung A, Perry J, Miller CA, et al. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci. 2012; 109 (30): 12111-6. [DOI:10.1073/pnas.1204533109]
11. Petros AG, Georgios AS, Apostolos R, Panagiotis S, Elias K. Conformational Properties of HIV-1 gp120/V3 Immunogenic Domains. Curr Med Chem. 2005; 12 (13):1551-68. [DOI:10.2174/0929867054038982]
12. Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses. 2021; 13 (5): 735. [DOI:10.3390/v13050735]
13. Arrildt KT, Joseph SB, Swanstrom R. The HIV-1 Env Protein: A Coat of Many Colors. Curr HIV/AIDS Rep. 2012; 9 (1): 52-63. [DOI:10.1007/s11904-011-0107-3]
14. Ivanoff LA, Dubay JW, Morris JF, Roberts SJ, Gutshall L, Sternberg EJ, et al. V3 Loop region of the HIV-1 gpl20 envelope protein is essential for virus infectivity. Virology. 1992; 187 (2): 423-32. [DOI:10.1016/0042-6822(92)90444-T]
15. Korber BT, MacInnes K, Smith RF, Myers G. Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1. J Virol. 1994; 68 (10): 6730-44. [DOI:10.1128/jvi.68.10.6730-6744.1994]
16. Hebeler-Barbosa F, Massolini VM, Watanabe T, Silva GF, Barbosa AN, Simões RP, et al. Influence of the HIV GWG variant in the HIV infection progression in mono and HCV coinfected patients. Medicine (Baltimore). 2019; 98 (29): e16376. [DOI:10.1097/MD.0000000000016376]
17. Guo JL, Yan Y, Zhang JF, Ji JM, Ge ZJ, Ge R, et al. Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects. Epidemiol Infect. 2019; 147: e181. [DOI:10.1017/S0950268819000700]
18. Tomasini-Grotto R-M, Montes B, Triglia D, Torres- Braconi C, Aliano-Block J, Zanotto PM de A, et al. Variability of the conserved V3 loop tip motif in HIV-1 subtype B isolates collected from Brazilian and French patients. Braz J Microbiol. 2010; 41 (3): 720-8. [DOI:10.1590/S1517-83822010000300024]
19. Gazarian KG, Palacios-Rodríguez Y, Gazarian TG, Huerta L. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features. Mol Immunol. 2013; 54 (2): 148-56. [DOI:10.1016/j.molimm.2012.11.016]
20. Kuwata T, Enomoto I, Baba M, Matsushita S. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrob Agents Chemother. 2016; 60 (1): 437-50. [DOI:10.1128/AAC.02285-15]
21. Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Rev. 2003; 5 (1): 52-61.
22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32 (5): 1792-7. [DOI:10.1093/nar/gkh340]
23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol BiolEvol. 2018; 35 (6): 1547-9. [DOI:10.1093/molbev/msy096]
24. Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J Virol. 2006; 80 (12): 6093-105. [DOI:10.1128/JVI.00205-06]
25. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985; 313 (6000): 277-84. [DOI:10.1038/313277a0]
26. Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998; 391 (6667): 594-7. [DOI:10.1038/35400]
27. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008; 455 (7213): 661-4. [DOI:10.1038/nature07390]
28. Andrews SM, Zhang Y, Dong T, Rowland-Jones SL, Gupta S, Esbjörnsson J. Analysis of HIV-1 envelope evolution suggests antibody-mediated selection of common epitopes among Chinese former plasma donors from a narrow-source outbreak. Sci Rep. 2018; 8 (1): 5743. [DOI:10.1038/s41598-018-23913-2]
29. Burke V, Williams C, Sukumaran M, Kim S-S, Li H, Wang X-H, et al. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Struct Lond Engl 1993. 2009; 17 (11): 1538-46. [DOI:10.1016/j.str.2009.09.012]
30. Gorny MK, Williams C, Volsky B, Revesz K, Wang X-H, Burda S, et al. Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1. J Virol. 2006; 80 (14): 6865-72. [DOI:10.1128/JVI.02202-05]
31. Gift SK, Leaman DP, Zhang L, Kim AS, Zwick MB. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. J Virol. 2017; 91 (24): e01216-17. [DOI:10.1128/JVI.01216-17]
32. Zolla-Pazner S, Cohen SS, Krachmarov C, Wang S, Pinter A, Lu S. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope. Virology. 2008; 372 (2): 233-46. [DOI:10.1016/j.virol.2007.09.024]
33. Araújo LAL, Junqueira DM, de Medeiros RM, Matte MCC, Almeida SE de M. Naturally occurring resistance mutations to HIV-1 entry inhibitors in subtypes B, C, and CRF31_BC. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2012; 54 (1): 6-10. [DOI:10.1016/j.jcv.2012.01.005]
34. Ogert RA, Ba L, Hou Y, Buontempo C, Qiu P, Duca J, et al. Structure-function analysis of human immunodeficiency virus type 1 gp120 amino acid mutations associated with resistance to the CCR5 coreceptor antagonist vicriviroc. J Virol. 2009; 83 (23): 12151-63. [DOI:10.1128/JVI.01351-09]
35. Araújo LAL, Almeida SEM. HIV-1 Diversity in the Envelope Glycoproteins: Implications for Viral Entry Inhibition. Viruses. 2013; 5 (2): 595-604. [DOI:10.3390/v5020595]
36. Hatada M, Yoshimura K, Harada S, Kawanami Y, Shibata J, Matsushita S. Human immunodeficiency virus type 1 evasion of a neutralizing anti-V3 antibody involves acquisition of a potential glycosylation site in V2. J Gen Virol. 2010; 91 (Pt 5): 1335-45. [DOI:10.1099/vir.0.017426-0]
37. Collins-Fairclough AM, Charurat M, Nadai Y, Pando M, Avila MM, Blattner WA, et al. Significantly longer envelope V2 loops are characteristic of heterosexually transmitted subtype B HIV-1 in Trinidad. PloS One. 2011; 6 (6): e19995. [DOI:10.1371/journal.pone.0019995]
38. Malherbe DC, Sanders RW, van Gils MJ, Park B, Gomes MM, Schuitemaker H, et al. HIV-1 envelope glycoprotein resistance to monoclonal antibody 2G12 is subject-specific and context-dependent in macaques and humans. PloS One. 2013; 8 (9): e75277. [DOI:10.1371/journal.pone.0075277]
39. Matsushita S, Yoshimura K, Ramirez KP, Pisupati J, Murakami T, KD-1002 Study Group. Passive transfer of neutralizing mAb KD-247 reduces plasma viral load in patients chronically infected with HIV-1. AIDS Lond Engl. 2015; 29 (4): 453-62. [DOI:10.1097/QAD.0000000000000570]
40. Pantophlet R, Aguilar-Sino RO, Wrin T, Cavacini LA, Burton DR. Analysis of the neutralization breadth of the anti-V3 antibody F425-B4e8 and re-assessment of its epitope fine specificity by scanning mutagenesis. Virology. 2007; 364 (2): 441-53. [DOI:10.1016/j.virol.2007.03.007]
41. Basmaciogullari S, Babcock GJ, Van Ryk D, Wojtowicz W, Sodroski J. Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding. J Virol. 2002; 76 (21): 10791-800. [DOI:10.1128/JVI.76.21.10791-10800.2002]
42. Holm GH, Zhang C, Gorry PR, Peden K, Schols D, De Clercq E, et al. Apoptosis of bystander T cells induced by human immunodeficiency virus type 1 with increased envelope/receptor affinity and coreceptor binding site exposure. J Virol. 2004; 78 (9): 4541-51. [DOI:10.1128/JVI.78.9.4541-4551.2004]
43. Berger EA, Sisler JR, Earl PL. Human immunodeficiency virus type 1 envelope glycoprotein molecules containing membrane fusion-impairing mutations in the V3 region efficiently undergo soluble CD4-stimulated gp120 release. J Virol. 1992; 66 (10): 6208-12. [DOI:10.1128/jvi.66.10.6208-6212.1992]
44. Shaik MM, Peng H, Lu J, Rits-Volloch S, Xu C, Liao M, et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature. 2019; 565 (7739): 318-23. [DOI:10.1038/s41586-018-0804-9]
45. Pantophlet R, Wrin T, Cavacini LA, Robinson JE, Burton DR. Neutralizing activity of antibodies to the V3 loop region of HIV-1 gp120 relative to their epitope fine specificity. Virology. 2008; 381 (2): 251-60. [DOI:10.1016/j.virol.2008.08.032]
46. Zwick MB, Kelleher R, Jensen R, Labrijn AF, Wang M, Quinnan GV, et al. A novel human antibody against human immunodeficiency virus type 1 gp120 is V1, V2, and V3 loop dependent and helps delimit the epitope of the broadly neutralizing antibody immunoglobulin G1 b12. J Virol. 2003; 77 (12): 6965-78. [DOI:10.1128/JVI.77.12.6965-6978.2003]
47. Haynes BF, Ma B, Montefiori DC, Wrin T, Petropoulos CJ, Sutherland LL, et al. Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology. 2006; 345 (1): 44-55. [DOI:10.1016/j.virol.2005.08.042]
48. Casseb J, Montanheiro P, Komninakis S, Brito A, Duarte AJ. Human immunodeficiency virus type 1 Brazilian subtype B variant showed an increasing avidity of the anti-V3 antibodies over time compared to the subtype B US/European strain in São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2004; 99 (1): 69-71. [DOI:10.1590/S0074-02762004000100012]
49. Junqueira DM, Medeiros RM de, Leite TCNF, Guimaraes ML, Graf T, Pinto AR, et al. Detection of the B"-GWGR variant in the southernmost region of Brazil: unveiling the complexity of the human immunodeficiency virus-1 subtype B epidemic. Mem Inst Oswaldo Cruz. 2013; 108 (6): 735-40. [DOI:10.1590/0074-0276108062013010]
50. de Brito A, Komninakis SCV, Novoa P, Oliveira RM de, Fonseca LAM, Duarte AJS, et al. Women Infected with HIV Type 1 Brazilian Variant, Subtype B (B′-GWGR Motif) Have Slower Progression to AIDS, Compared with Patients Infected with Subtype B (B-GPGR Motif). Clin Infect Dis. 2006; 43 (11): 1476-81. [DOI:10.1086/508875]
51. Santoro-Lopes G, Harrison LH, Tavares MD, Xexéo A, Santos ACED, Schechter M. HIV Disease Progression and V3 Serotypes in Brazil: Is B Different from B-Br? AIDS Res Hum Retroviruses. 2000; 16 (10): 953-8. [DOI:10.1089/08892220050058362]
52. Casseb J, Komninakis S, Abdalla L, Brigido LFM, Rodrigues R, Araújo F, et al. HIV disease progression: is the Brazilian variant subtype B' (GWGR motif) less pathogenic than US/European subtype B (GPGR)? Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2002; 6 (3): 164-9. [DOI:10.1016/S1201-9712(02)90105-0]
53. Suphaphiphat P, Essex M, Lee T-H. Mutations in the V3 stem versus the V3 crown and C4 region have different effects on the binding and fusion steps of human immunodeficiency virus type 1 gp120 interaction with the CCR5 coreceptor. Virology. 2007; 360 (1): 182-90. [DOI:10.1016/j.virol.2006.10.019]
54. Yang X, Kurteva S, Ren X, Lee S, Sodroski J. Subunit stoichiometry of human immunodeficiency virus type 1 envelope glycoprotein trimers during virus entry into host cells. J Virol. 2006; 80 (9): 4388-95. [DOI:10.1128/JVI.80.9.4388-4395.2006]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.