Volume 9, Issue 2 (6-2021)                   JoMMID 2021, 9(2): 62-70 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbari E, Ajdari S, Mirabzadeh Ardakani E, Agi E, Khalaj V, Bolhassani A. Expression of a Novel HIV-1 Gag-Pol-Env-Nef-Rev Multi-Epitope Construct in Escherichia coli. JoMMID. 2021; 9 (2) :62-70
URL: http://jommid.pasteur.ac.ir/article-1-365-en.html
1Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; 2Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (405 Views)
Introduction: Recombinant subunit vaccines have been explored against various human pathogens, however, developing an effective therapeutic toward human immunodeficiency virus (HIV) infection has been challenging. So far, several recombinant HIV-1 antigens have been produced and examined for activation of desired immune responses. This study aimed to express an HIV-1 multiepitope protein as an antigen candidate to develop a vaccine.  Methods: In this study, the codon-optimized encoding sequence of the designed multi-epitope construct (Gag-Pol-Env-Nef-Rev) was synthesized and subcloned into the pET-24a (+) expression vector. Then, expression of the target antigen was evaluated in E. coli BL21 (DE3) and Rosetta strains under different conditions (temperature, optical density/ OD600, isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, and time). Finally, the expression of the Gag-Pol-Env-Nef-Rev multi-epitope protein was confirmed using SDS-PAGE and western blot analysis.  Results: The highly conserved and immunodominant T-cell epitopes of HIV-1 Gag, Pol, Env, Nef, and Rev proteins were used to prepare a novel Gag-Pol-Env-Nef-Rev multi-epitope construct. The gag-pol-env-nef-rev gene was successfully sub-cloned in pET-24a (+) vector and subsequently expressed in BL21 (DE3) E. coli strain under optimized conditions (1 mM IPTG, 16 h post-induction, OD 600= 0.6, and 37ºC). A clear band of ~ 35 kDa was detected by western blotting using an anti-His antibody, indicating the successful expression of our target multi-epitope protein. Conclusion: Expression of the recombinant HIV-1 multi-epitope protein was optimized in a bacterial system. The expressed protein will be purified to use as a multi-epitope protein vaccine candidate in the future.
Full-Text [PDF 1493 kb]   (67 Downloads)    
Type of Study: Original article | Subject: Other
Received: 2021/05/25 | Accepted: 2021/06/20 | Published: 2021/08/29

1. unaids.org [Internet]. UNAIDS [cited 2016]. Available from: https://www.unaids.org/en/resources/fact-sheet.
2. Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 vaccine trials: evolving concepts and designs. Open AIDS J. 2012; 6:274-88 [DOI:10.2174/1874613601206010274]
3. Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins. 2018; 86 (12): 1284-93. [DOI:10.1002/prot.25609]
4. Karlsson I, Brandt L, Vinner L, Kromann I, Andreasen LV, Andersen P, et al. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clin Immunol. 2013;146 (2): 120-30. [DOI:10.1016/j.clim.2012.12.005]
5. Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S, Puertas MC, et al. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). EClinicalMedicine. 2019; 11: 65-80. [DOI:10.1016/j.eclinm.2019.05.009]
6. Barouch DH, O'brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med. 2010; 16 (3): 319-23. [DOI:10.1038/nm.2089]
7. Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol. 2020; 119: 106-22. [DOI:10.1016/j.molimm.2020.01.013]
8. Karpenko LI, Bazhan SI, Eroshkin AM, Antonets DV, Chikaev AN, Ilyichev AA. Artificial epitope-based immunogens in HIV-vaccine design. In: Advances in HIV and AIDS Control. IntechOpen; 2018. [DOI:10.5772/intechopen.77031]
9. Liu Z, Xiao Y, Chen Y-H. Epitope-vaccine strategy against HIV-1: today and tomorrow. Immunobiology. 2003; 208 (4): 423-8. [DOI:10.1078/0171-2985-00286]
10. Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother. 2020; 16 (3): 713-22. [DOI:10.1080/21645515.2019.1666957]
11. Ng'uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol. 2020; 11: 590780. [DOI:10.3389/fimmu.2020.590780]
12. Yu X, Lichterfeld M, Addo M, Altfeld M. Regulatory and accessory HIV-1 proteins: potential targets for HIV-1 vaccines? Curr Med Chem. 2005; 12 (6): 741-7. [DOI:10.2174/0929867053202205]
13. Akbari E, Kardani K, Namvar A, Ajdary S, Ardakani EM, Khalaj V, et al. In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Biotechnol Lett. 2021: 1-38. [DOI:10.1007/s10529-021-03143-9]
14. Nabel GJ, Kwong PD, Mascola JR. Progress in the rational design of an AIDS vaccine. Philos Trans R Soc Lond B Biol Sci. 2011;366 (1579): 2759-65. [DOI:10.1098/rstb.2011.0096]
15. Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, et al. CD8+ T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology. 2018; 15 (1): 46. [DOI:10.1186/s12977-018-0429-y]
16. Harrer T, Dinges W, Roman F, group T-H-s. Long-term follow-up of HIV-1-infected adults who received the F4/AS01B HIV-1 vaccine candidate in two randomised controlled trials. Vaccine. 2018; 36 (19): 2683-6. [DOI:10.1016/j.vaccine.2018.03.043]
17. Létourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One. 2007; 2 (10): e984. [DOI:10.1371/journal.pone.0000984]
18. Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS One. 2015; 10 (9): e0137466. [DOI:10.1371/journal.pone.0137466]
19. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014; 5: 172. [DOI:10.3389/fmicb.2014.00172]
20. Makino T, Skretas G, Georgiou G. Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact. 2011; 10 (1): 1-10. [DOI:10.1186/1475-2859-10-32]
21. Abdollahi S, Morowvat MH, Savardashtaki A, Irajie C, Najafipour S, Ghasemi Y. Evaluating the Five Escherichia coli Derivative Strains as Platform for Arginine Deiminase Overproduction. Research Square Preprint. 2020; https://doi.org/10.21203/rs.3.rs-112137/v1 [DOI:10.21203/rs.3.rs-112137/v1.]
22. Rahimi R, Ebtekar M, Moazzeni SM, Mostafaie A, Mahdavi M. Optimization of multi-epitopic HIV-1 recombinant protein expression in prokaryote system and conjugation to mouse DEC-205 monoclonal antibody: implication for in-vivo targeted delivery of dendritic cells. Iran J Basic Med Sci. 2015; 18 (2):145-52.
23. Arabi S, Aghasadeghi MR, Memarnejadian A, Kohram F, Aghababa H, Khoramabadi N, et al. Cloning, expression and purification of a novel multi-epitopic HIV-1 vaccine candidate: A preliminary study on immunoreactivity. Vacres. 2014; 1 (1): 10-15. [DOI:10.18869/acadpub.vacres.1.1.10]
24. Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett. 2019; 41 (11): 1283-98. [DOI:10.1007/s10529-019-02734-x]
25. Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Curr HIV Res. 2019; 17 (6): 408-28. [DOI:10.2174/1570162X17666191121114522]
26. Elbahnasawy MA, Farag MM, Mansour MT, El-Ghamery AA. Cloning, expression and nanodiscs assemble of recombinant HIV-1 gp41. Microb Pathog. 2020; 138: 103824. [DOI:10.1016/j.micpath.2019.103824]
27. Davoodi S, Bolhassani A, Sadat SM, Irani S. Enhancing HIV-1 Nef penetration into mammalian cells as an antigen candidate. J Med Microbiol Infect Dis. 2019;7 (1 and 2): 37-43. [DOI:10.29252/JoMMID.]
28. Jafarzade BS, Bolhassani A, Sadat SM, Yaghobi R. Delivery of HIV-1 Nef protein in mammalian cells using cell penetrating peptides as a candidate therapeutic vaccine. International Int J Pept Res Ther. 2017; 23 (1): 145-53. [DOI:10.1007/s10989-016-9547-3]

Add your comments about this article : Your username or Email:

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.