Volume 9, Issue 2 (6-2021)                   JoMMID 2021, 9(2): 76-81 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahanshiri Z, Nejatbakhsh S. The Effects of Dehydrozingerone on Growth, Biofilm Formation, and Ergosterol Biosynthesis of Candida albicans. JoMMID 2021; 9 (2) :76-81
URL: http://jommid.pasteur.ac.ir/article-1-357-en.html
Department of Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
Abstract:   (1917 Views)
Introduction: Candida albicans can cause various diseases, which might lead to various cases of life-threatening diseases. Biofilm is a specific feature of C. albicans formed on mucosal surfaces and medical devices. Moreover, biofilm protects Candida cells from antifungals and makes the treatment challenging. Here, we studied the effects of dehydrozingerone on C. albicans growth, ergosterol biosynthesis, biofilm formation, and the expression of an essential gene involved in yeast-hypha transition. Methods: C. albicans cells were treated with serial two-fold concentrations of dehydrozingerone (0.125-2 mg/ml) for 48 h at 35 °C. The weights of the fungal cells were estimated as a sign of fungal growth. Biofilm formation was evaluated by a tetrazolium salt (XTT) reduction assay. The expression of the HWP1 gene was assayed by real-time PCR. Results: Dehydrozingerone inhibited C. albicans growth in the range of 3.57% to 84.28%, dose-dependently. The ergosterol content of yeast cells was reduced by 50% in the highest concentration. The biofilm formation was also inhibited by more than 50% at the highest concentration. The expression of the HWP1 gene was suppressed by dehydrozingerone at different concentrations. Conclusion: Our results indicate that dehydrozingerone displayed effective activity against growth, biofilm formation, and ergosterol biosynthesis in C. albicans in vitro.
Full-Text [PDF 1062 kb]   (989 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/05/8 | Accepted: 2021/06/20 | Published: 2021/08/29

References
1. López-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol. 2005; 15 (12): 453-5. [DOI:10.1016/j.cub.2005.06.020]
2. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell. 2007; 6 (6): 931-9. [DOI:10.1128/EC.00049-07]
3. Wenzel RP, Gennings C. Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis. 2005; 41 Suppl 6: S389-93. [DOI:10.1086/430923]
4. Elving GJ, Van Der Mei HC, Busscher HJ, Weissenbruch RV, Albers FWJ. Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol. 2002; 111 (3 Pt 1): 200-3. [DOI:10.1177/000348940211100302]
5. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004; 17 (2): 255-67. [DOI:10.1128/CMR.17.2.255-267.2004]
6. Mafalda C, Miguel CT. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med. 2018; 5: 28. [DOI:10.3389/fmed.2018.00028]
7. Ly Q-Z, Yan L, Jiang Y-Y. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn. Virulence. 2016; 7 (6): 649-59. [DOI:10.1080/21505594.2016.1188236]
8. Sanglard D, Ischer F, Parkinson T, Falconer D, Bill J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agent Chemother. 2003; 47 (8): 2404-12. [DOI:10.1128/AAC.47.8.2404-2412.2003]
9. Wong SS, Kao RY, Yuen KY, Yuen KY, Wang Y, Yang D, et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One. 2014; 9 (1): e85836. [DOI:10.1371/journal.pone.0085836]
10. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicansmetabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio. 2013; 4 (1): e00526-12. [DOI:10.1128/mBio.00526-12]
11. Kubra R, Murthy S P, Rao M LJ. In vitro antifungal activity of dehydrozingerone and its fungitoxic. J Food Sci. 2013; 78 (1): M64-9. [DOI:10.1111/j.1750-3841.2012.03009.x]
12. Hampannavar GA, Karpoormath R, Palkar MB, Shaikh MS. An appraisal on recent medicinal perspective of curcumin degradant: Dehydrozingerone (DZG). Bioorg Med Chem. 2016; 24 (4): 501-20. [DOI:10.1016/j.bmc.2015.12.049]
13. Clinical Laboratory Standards Institute (CLSI). CLSI reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. Approved Standard, CLSI document M27-A2. 2011.
14. Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punicagranatum L.) extract against human bacterial and fungal pathogens. Biofouling. 2013; 29 (8): 929-37. [DOI:10.1080/08927014.2013.820825]
15. Morici P, Fais R, Rizzato C, Tavanti A, Lupetti A. Inhibition of Candida albicans biofilm formation by the synthetic lactoferricin derived peptide hLF1-11. PloS one. 2013; 11 (11): e0167470. [DOI:10.1371/journal.pone.0167470]
16. Breivik O, Owades J. Yeast analysis, spectrophotometric semimicrodetermination of ergosterol in yeast. J Agric Food Chem. 1957; 5 (5): 360-3. [DOI:10.1021/jf60075a005]
17. Rezaie S, Ban J, Mildner M, Poitschek C, Brna T, tTschachler E. Characterization of a cDNA clone, encoding a 70 kDa heat shock protein from the dermatophyte pathogen Trichophyton rubrum. Gene. 2000; 241 (1): 27-33. [DOI:10.1016/S0378-1119(99)00475-8]
18. Ding X, Liu Z, Su J, Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014; 14 (80). [DOI:10.1186/1471-2180-14-80]
19. Losberger C, Ernst JF. Sequence of the Candida albicansgene encoding actin. Nucleic Acids Res. 1989; 17(22): 9488. [DOI:10.1093/nar/17.22.9488]
20. Fox EP, Nobile CJ. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012; 3 (6): 315-22. [DOI:10.4161/trns.22281]
21. Raut JS, Karuppayil SM. Phytochemicals as Inhibitors of Candida Biofilm. Curr Pharma Des. 2016; 22 (27): 4111-34. [DOI:10.2174/1381612822666160601104721]
22. Burmudzija AZ, Muskinja MJ, Kosanic MM, Rankovic RB, Novakovic SB, Dordevic BS, et al. Cytotoxic and antimicrobial activity of dehydrozingerone based cyclopropyl derivatives. Chem Biodivers. 2017; 14 (8): e1700077. [DOI:10.1002/cbdv.201700077]
23. Svetaz AL. Di Liberto GM, Zanardi MM, Suárez GA, Zacchino SA. Efficient production of the flavoring agent zingerone and of both (R)- and (S)-zingerols via green fungal fiocatalysis. Comparative antifungal activities between anantiomers. Int J Mol Sci. 2014; 15 (12): 22042-58. [DOI:10.3390/ijms151222042]
24. Modrezewka B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol. 2015; 61 (1): 3-9.
25. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Fan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006; 2 (7): e63. [DOI:10.1371/journal.ppat.0020063]
26. Tsang PW, Bandara HM, Fong WP. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One. 2012; 7 (11): e50866. [DOI:10.1371/journal.pone.0050866]
27. Abd El-Baky MR. El-Gendy SG. Effect of non-steroidal anti-inflammatory drugs and dexamethazone on the biofilm formation and expression of some adhesion-related genes of Candida albicansand Staphylococcus aureus. Afr J Microbiol Res. 2016; 10 (20): 694-707. [DOI:10.5897/AJMR2016.8013]
28. Khodavandi A, Harmal NS, Alizadeh F, Scully O, Sidik SM, Othman F, et al. Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine. 2011; 19 (1): 56- 63. [DOI:10.1016/j.phymed.2011.08.060]
29. Nejatbakhsh S, Ilkhanizadeh-QomiM, Razzaghi-Abyaneh M, Jahanshiri Z. The effects of ellagic acid on growth and biofilm formation of Candida albicans. JOMMID. 2020; 8 (1): 14-18. [DOI:10.29252/JoMMID.8.1.14]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.