1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [
DOI:10.1016/S0140-6736(20)30183-5]
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5: 536-44. [
DOI:10.1038/s41564-020-0695-z]
3. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000; 87 (5): e1-9. [
DOI:10.1161/01.RES.87.5.e1]
4. Boehm M, Nabel EG. Angiotensin-converting enzyme 2-a new cardiac regulator. N Engl J Med. 2002; 347 (22): 1795-7. [
DOI:10.1056/NEJMcibr022472]
5. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020. [
DOI:10.1101/2020.01.30.927806]
6. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020; 202 (5): 756-9. [
DOI:10.1164/rccm.202001-0179LE]
7. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021; 6 (1): 233. [
DOI:10.1038/s41392-021-00653-w]
8. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503 (7477): 535-8. [
DOI:10.1038/nature12711]
9. Der Sarkissian S, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension. 2008; 51 (3): 712-8. [
DOI:10.1161/HYPERTENSIONAHA.107.100693]
10. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014; 32 (26): 3169-74. [
DOI:10.1016/j.vaccine.2014.04.016]
11. Chen W-H, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. J Pharm Sci. 2017; 106 (8): 1961-70. [
DOI:10.1016/j.xphs.2017.04.037]
12. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020; 9 (3): 623. [
DOI:10.3390/jcm9030623]
13. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; 27 (3): 325-8. [
DOI:10.1016/j.chom.2020.02.001]
14. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9 (1): 382-5. [
DOI:10.1080/22221751.2020.1729069]
15. Ter Meulen J, Van Den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006; 3 (7): e237. [
DOI:10.1371/journal.pmed.0030237]
16. Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 2012; 40 (W1): W521-4. [
DOI:10.1093/nar/gks480]
17. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016; 44 (W1): W344-50. [
DOI:10.1093/nar/gkw408]
18. Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D. PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res. 2011; 39 (Web Server issue): W283-7. [
DOI:10.1093/nar/gkr311]
19. Fernández‐Recio J. Prediction of protein binding sites and hot spots. Wiley Interdiscip Rev Comput Mol Sci. 2011; 1 (5): 680-98. [
DOI:10.1002/wcms.45]
20. Sanchez-Garcia R, Sorzano COS, Carazo JM, Segura J. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces. Bioinformatics. 2019; 35 (3): 470-7. [
DOI:10.1093/bioinformatics/bty647]
21. Kawabata T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins: Struct Funct Bioinf. 2010; 78 (5): 1195-211. [
DOI:10.1002/prot.22639]
22. Qin S, Zhou H-X. meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics. 2007; 23 (24): 3386-7. [
DOI:10.1093/bioinformatics/btm434]
23. Zhou H-X, Qin S. Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics. 2007; 23 (17): 2203-9. [
DOI:10.1093/bioinformatics/btm323]
24. Dunbar J, Krawczyk K, Leem J, Marks C, Nowak J, Regep C, et al. SAbPred: a structure-based antibody prediction server. Nucleic Acids Res. 2016; 44 (Web Server issue): W474-8. [
DOI:10.1093/nar/gkw361]
25. De Vries SJ, Van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010; 5 (5): 883-97. [
DOI:10.1038/nprot.2010.32]
26. Yuan M, Wu NC, Zhu X, Lee C-CD, So RT, Lv H, et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020; 368 (6491): 630-3. [
DOI:10.1126/science.abb7269]
27. Jones DS, Silverman AP, Cochran JR. Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008; 26 (9): 498-505. [
DOI:10.1016/j.tibtech.2008.05.009]
28. Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH. Ofatumumab monoclonal antibody affinity maturation through in silico modeling. Iran Biomed J. 2018; 22 (3): 180-92.
29. Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH, Dastmalchi S. Affinity maturation and characterization of the ofatumumab monoclonal antibody. J Cell Biochem. 2019; 120 (1): 940-50. [
DOI:10.1002/jcb.27457]
30. Lei C, Fu W, Qian K, Li T, Zhang S, Ding M, et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. Biorxiv. 2020. [
DOI:10.1101/2020.02.01.929976]
31. Alhenc-Gelas F, Drueke TB. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int. 2020; 97 (6): 1091-3. [
DOI:10.1016/j.kint.2020.04.009]
32. Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev. 2000; 13 (4): 602-14. [
DOI:10.1128/CMR.13.4.602]
33. Antikainen NM, Martin SF. Altering protein specificity: techniques and applications. Bioorg Med Chem. 2005; 13 (8): 2701-16. [
DOI:10.1016/j.bmc.2005.01.059]
34. Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009; 9 (1): 61-8. [
DOI:10.1186/1472-6750-9-61]
35. Eyvazi S, Payandeh Z, Khalili S, Sefid F, Ouladsahebmadarek E. Bevacizumab Antibody Affinity Maturation to Improve Ovarian Cancer Immunotherapy: In Silico Approach. Int J Pept Res Ther. 2019; 25 (4): 1417-30. [
DOI:10.1007/s10989-018-9787-5]
36. Park T, Lee S-Y, Kim S, Kim MJ, Kim HG, Jun S, et al. Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2. BioRxiv. 2020. [
DOI:10.1101/2020.02.22.951178]
37. Saini S, Agarwal M, Pradhan A, Pareek S, Singh A, Dhawan G, et al. Affinity maturation of cross-reactive CR3022 antibody against the receptor-binding domain of SARS-CoV-2 via in silico site-directed mutagenesis. ResearchSquare. 2021. [
DOI:10.21203/rs.3.rs-92745/v2]