Volume 9, Issue 3 (9-2021)                   JoMMID 2021, 9(3): 156-169 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sefid F, payandeh Z, Khalesi B, Mansoori B, Fotovvat M, Touhidinia M. Enhancement of SARS-CoV-2 Receptor Binding Domain -CR3022 Human Antibody Binding Affinity via In silico Engineering Approach. JoMMID 2021; 9 (3) :156-169
URL: http://jommid.pasteur.ac.ir/article-1-345-en.html
Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
Abstract:   (1706 Views)
Introduction: The angiotensin-converting enzyme 2 (ACE2) is the effective primary receptor for SARS-CoV-2. The interaction between ACE2 and the spike protein of the virus is the crucial step for virus entry into the target cells. ACE2 receptor can be blocked by neutralizing antibodies (nAbs) such as CR3022 which targets the virus receptor-binding site. Enhancing the binding affinity between CR3022 and ACE2 would lead to a more efficient blockade of virus entry. Methods:  In this regard, the amino acids with central roles in the binding affinity of CR3022 antibody to spike protein were substituted. The best mutations to increase the affinity of antibodies were also selected based on protein-protein docking and molecular dynamics simulations. Result: The variants 45 (H:30I/G, H:55D/F, H: 103S/Y, L:59T/F, L:98Y/A), 60(H:31T/D, H:55D/E,  H:103S/Y, L:59T/D, L:98Y/F), 67(H:30I/G, H:55D/F, H:103S/Y, L:56 W/L, L:59T/Y, L:61E/G), 69(H:31T/D,  H:55D/F,   H:103S/Y, L:59T/F, L:98Y/A), and 71(H: 31T/D, H:55D/F, H:103S/Y) with respective binding affinities of -167.3, -167.5, -161.6, -173.0, and -169.8 Kcal/mol had higher binding affinities against the RBD of the SARS-CoV2 spike protein compared to the wild-type Ab. Conclusion: The engineered antibodies with higher binding affinities against the target protein can improve specificity and sensitivity. Thus, a more successful blockade of the ACE2 is achieved, resulting in a better therapeutic outcome. In silico studies can pave the way for designing these engineered molecules avoiding the economic and ethical challenges.
 
Full-Text [PDF 7223 kb]   (999 Downloads)    
Type of Study: Original article | Subject: Immune responses, deficiencies and vaccine candidates
Received: 2021/04/11 | Accepted: 2021/09/19 | Published: 2021/10/12

References
1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. [DOI:10.1016/S0140-6736(20)30183-5]
2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5: 536-44. [DOI:10.1038/s41564-020-0695-z]
3. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000; 87 (5): e1-9. [DOI:10.1161/01.RES.87.5.e1]
4. Boehm M, Nabel EG. Angiotensin-converting enzyme 2-a new cardiac regulator. N Engl J Med. 2002; 347 (22): 1795-7. [DOI:10.1056/NEJMcibr022472]
5. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020. [DOI:10.1101/2020.01.30.927806]
6. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020; 202 (5): 756-9. [DOI:10.1164/rccm.202001-0179LE]
7. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021; 6 (1): 233. [DOI:10.1038/s41392-021-00653-w]
8. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503 (7477): 535-8. [DOI:10.1038/nature12711]
9. Der Sarkissian S, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension. 2008; 51 (3): 712-8. [DOI:10.1161/HYPERTENSIONAHA.107.100693]
10. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014; 32 (26): 3169-74. [DOI:10.1016/j.vaccine.2014.04.016]
11. Chen W-H, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. J Pharm Sci. 2017; 106 (8): 1961-70. [DOI:10.1016/j.xphs.2017.04.037]
12. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J Clin Med. 2020; 9 (3): 623. [DOI:10.3390/jcm9030623]
13. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; 27 (3): 325-8. [DOI:10.1016/j.chom.2020.02.001]
14. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9 (1): 382-5. [DOI:10.1080/22221751.2020.1729069]
15. Ter Meulen J, Van Den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006; 3 (7): e237. [DOI:10.1371/journal.pmed.0030237]
16. Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 2012; 40 (W1): W521-4. [DOI:10.1093/nar/gks480]
17. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016; 44 (W1): W344-50. [DOI:10.1093/nar/gkw408]
18. Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D. PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res. 2011; 39 (Web Server issue): W283-7. [DOI:10.1093/nar/gkr311]
19. Fernández‐Recio J. Prediction of protein binding sites and hot spots. Wiley Interdiscip Rev Comput Mol Sci. 2011; 1 (5): 680-98. [DOI:10.1002/wcms.45]
20. Sanchez-Garcia R, Sorzano COS, Carazo JM, Segura J. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces. Bioinformatics. 2019; 35 (3): 470-7. [DOI:10.1093/bioinformatics/bty647]
21. Kawabata T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins: Struct Funct Bioinf. 2010; 78 (5): 1195-211. [DOI:10.1002/prot.22639]
22. Qin S, Zhou H-X. meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics. 2007; 23 (24): 3386-7. [DOI:10.1093/bioinformatics/btm434]
23. Zhou H-X, Qin S. Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics. 2007; 23 (17): 2203-9. [DOI:10.1093/bioinformatics/btm323]
24. Dunbar J, Krawczyk K, Leem J, Marks C, Nowak J, Regep C, et al. SAbPred: a structure-based antibody prediction server. Nucleic Acids Res. 2016; 44 (Web Server issue): W474-8. [DOI:10.1093/nar/gkw361]
25. De Vries SJ, Van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010; 5 (5): 883-97. [DOI:10.1038/nprot.2010.32]
26. Yuan M, Wu NC, Zhu X, Lee C-CD, So RT, Lv H, et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020; 368 (6491): 630-3. [DOI:10.1126/science.abb7269]
27. Jones DS, Silverman AP, Cochran JR. Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008; 26 (9): 498-505. [DOI:10.1016/j.tibtech.2008.05.009]
28. Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH. Ofatumumab monoclonal antibody affinity maturation through in silico modeling. Iran Biomed J. 2018; 22 (3): 180-92.
29. Payandeh Z, Rajabibazl M, Mortazavi Y, Rahimpour A, Taromchi AH, Dastmalchi S. Affinity maturation and characterization of the ofatumumab monoclonal antibody. J Cell Biochem. 2019; 120 (1): 940-50. [DOI:10.1002/jcb.27457]
30. Lei C, Fu W, Qian K, Li T, Zhang S, Ding M, et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. Biorxiv. 2020. [DOI:10.1101/2020.02.01.929976]
31. Alhenc-Gelas F, Drueke TB. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int. 2020; 97 (6): 1091-3. [DOI:10.1016/j.kint.2020.04.009]
32. Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev. 2000; 13 (4): 602-14. [DOI:10.1128/CMR.13.4.602]
33. Antikainen NM, Martin SF. Altering protein specificity: techniques and applications. Bioorg Med Chem. 2005; 13 (8): 2701-16. [DOI:10.1016/j.bmc.2005.01.059]
34. Edelheit O, Hanukoglu A, Hanukoglu I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 2009; 9 (1): 61-8. [DOI:10.1186/1472-6750-9-61]
35. Eyvazi S, Payandeh Z, Khalili S, Sefid F, Ouladsahebmadarek E. Bevacizumab Antibody Affinity Maturation to Improve Ovarian Cancer Immunotherapy: In Silico Approach. Int J Pept Res Ther. 2019; 25 (4): 1417-30. [DOI:10.1007/s10989-018-9787-5]
36. Park T, Lee S-Y, Kim S, Kim MJ, Kim HG, Jun S, et al. Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2. BioRxiv. 2020. [DOI:10.1101/2020.02.22.951178]
37. Saini S, Agarwal M, Pradhan A, Pareek S, Singh A, Dhawan G, et al. Affinity maturation of cross-reactive CR3022 antibody against the receptor-binding domain of SARS-CoV-2 via in silico site-directed mutagenesis. ResearchSquare. 2021. [DOI:10.21203/rs.3.rs-92745/v2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.