Volume 9, Issue 1 (3-2021)                   JoMMID 2021, 9(1): 25-31 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahpeyma M, Bashar R. Evaluation of Multiplicity of Infection (MOI) and Harvesting Time on the Production of CVS-11 Strain of Rabies Virus in BSR Cell Line. JoMMID 2021; 9 (1) :25-31
URL: http://jommid.pasteur.ac.ir/article-1-341-en.html
Department of Virology, National Reference Center for Rabies, Pasteur Institute of Iran, Tehran, Iran.
Abstract:   (1838 Views)
Introduction: Rabies is a zoonotic fatal viral disease caused by the rabies virus of the genus Lyssavirus, and the family Rhabdoviridae. Challenge virus standard (CVS-11) strain of rabies virus is a key element in rabies reference laboratories, as many gold-standard tests depend on a suitable titer of this strain for interpretation of results. The present study investigated the optimal CVS-11 production in BSR cells (a clone of BHK-21). Methods: We analyzed the kinetic growth of BSR cells in a T-flask and inoculated BSR cells with different MOI of CVS-11 strain of rabies virus, and harvested the produced virus at different time points.  Results: Our data showed that BSR cells had a doubling time of around 24-30 h, and at least 95% of cells kept their viability three days after culture. The virus reached the highest titer when the cells were infected at an MOI of 0.1 in DMEM medium, equal to 1.5 × 107 fluorescent focus units (FFU)/ml. Time-course analysis of CVS-11 titer showed that the highest titer was achieved around 72 h post-infection. All tests were performed in triplicate. Conclusion: Since producing the virus in mammalian cell culture is an expensive and complicated method, optimizing the virus production process may be an excellent strategy to lower the cost, save the laboratory resources and maximize productivity.
Full-Text [PDF 960 kb]   (1754 Downloads)    
Type of Study: Original article | Subject: Diagnostic/screening methods and protocols
Received: 2021/02/23 | Accepted: 2021/03/20 | Published: 2021/04/27

References
1. Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy G, et al. Rabies-epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q. 2017; 37 (1): 212-51. [DOI:10.1080/01652176.2017.1343516]
2. Williamson JG. Rabies : symptoms, treatment and prevention. New york: Nova Science Publishers, Inc.; 2010.
3. Leung AK, Davies HD, Hon K-LE. Rabies: epidemiology, pathogenesis, and prophylaxis. Adv Ther. 2007; 24 (6): 1340-7. [DOI:10.1007/BF02877781]
4. Riedel C, Vasishtan D, Pražák V, Ghanem A, Conzelmann K-K, Rümenapf T. Cryo EM structure of the rabies virus ribonucleoprotein complex. Sci Rep. 2019; 9 (1): 1-6. [DOI:10.1038/s41598-019-46126-7]
5. Petersen BW, Rupprecht CE. Human rabies epidemiology and diagnosis. In: Thacker S, ed. Non- flavivirus encephalitis. Rjeka, Croatia: InTech. 2011: 247-78.
6. Meeting WECoBS, Organization WH. WHO Expert Committee on Biological Standardization: Sixtieth Report: World Health Organization; 2013.
7. Nadin-Davis S, Simani S, Armstrong J, Fayaz A, Wandeler A. Molecular and antigenic characterization of rabies viruses from Iran identifies variants with distinct epidemiological origins. Epidemiol Infect. 2003; 131 (1): 777-90. [DOI:10.1017/S095026880300863X]
8. Rhodes CJ, Atkinson RPD, Anderson RM, Macdonald DW. Rabies in Zimbabwe: reservoir dogs and the implications for disease control. Philos Trans R Soc Lond B Biol Sci. 1998; 353 (1371): 999-1010. [DOI:10.1098/rstb.1998.0263]
9. Yahiaoui F, Kardjadj M, Laidoudi Y, Medkour H, Ben-Mahdi MH. The epidemiology of dog rabies in Algeria: Retrospective national study of dog rabies cases, determination of vaccination coverage and immune response evaluation of three commercial used vaccines. Prev Vet Med. 2018; 158: 65-70. [DOI:10.1016/j.prevetmed.2018.07.011]
10. Gibson AD, Mazeri S, Lohr F, Mayer D, Burdon Bailey JL, Wallace RM, et al. One million dog vaccinations recorded on mHealth innovation used to direct teams in numerous rabies control campaigns. PLoS One. 2018; 13 (7): e0200942. [DOI:10.1371/journal.pone.0200942]
11. Minghui R, Stone M, Semedo MH, Nel L. New global strategic plan to eliminate dog-mediated rabies by 2030. Lancet Glob Health. 2018; 6 (8): e828-e9. [DOI:10.1016/S2214-109X(18)30302-4]
12. WHO. WHO expert consultation on rabies: third report: World Health Organization; 2018.
13. Nel LH. Discrepancies in data reporting for rabies, Africa. Emerg Infect Diseases. 2013; 19 (4): 529-33. [DOI:10.3201/eid1904.120185]
14. Velasco-Villa A, Escobar LE, Sanchez A, Shi M, Streicker DG, Gallardo-Romero NF, et al. Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antiviral Res. 2017; 143: 1-12. [DOI:10.1016/j.antiviral.2017.03.023]
15. Patel AC, Upmanyu V, Ramasamy S, Gupta PK, Singh R, Singh RP. Molecular and immunogenic characterization of BHK-21 cell line adapted CVS-11 strain of rabies virus and future prospect in vaccination strategy. Virusdisease. 2015; 26 (4): 288-96. [DOI:10.1007/s13337-015-0285-5]
16. Wiktor T, Koprowski H. Antigenic variants of rabies virus. J Exp Med. 1980; 152 (1): 99-112. [DOI:10.1084/jem.152.1.99]
17. Yager ML, Moore SM. The rapid fluorescent focus inhibition test. Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention, Volume 2: Elsevier; 2015; 199-215. [DOI:10.1016/B978-0-12-801919-1.00017-8]
18. Krämer B, Schildger H, Behrensdorf-Nicol H, Hanschmann K, Duchow K. The rapid fluorescent focus inhibition test is a suitable method for batch potency testing of inactivated rabies vaccines. Biologicals. 2009; 37 (2): 119-26. [DOI:10.1016/j.biologicals.2009.01.001]
19. Qin S, Volokhov D, Rodionova E, Wirblich C, Schnell MJ, Chizhikov V, et al. A new recombinant rabies virus expressing a green fluorescent protein: A novel and fast approach to quantify virus neutralizing antibodies. Biologicals. 2019; 59: 56-61. [DOI:10.1016/j.biologicals.2019.03.002]
20. Timiryasova TM, Hodge SA, Zheng L, Singer A, Vincent D, Rahman M, et al. Preparation and qualification of internal rabies reference standards for use in the rabies rapid fluorescent focus inhibition test. Sci Rep. 2020; 10 (1): 1-9. [DOI:10.1038/s41598-020-66754-8]
21. Meza DK, Broos A, Becker DJ, Behdenna A, Willett BJ, Viana M, et al. Predicting the presence and titre of rabies virus‐neutralizing antibodies from low‐volume serum samples in low‐containment facilities. Transbound Emerg Dis. 2020. [DOI:10.1101/2020.04.24.060095]
22. Kallel H, Jouini A, Majoul S, Rourou SJJob. Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells. J Biotechnol. 2002; 95 (3): 195-204. [DOI:10.1016/S0168-1656(02)00009-3]
23. Kang W, Huang H, Cai M, Li Y, Hou W, Yun F,et al. On-site cell concentration and viability detections using smartphone based field-portable cell counter. Anal Chim Acta. 2019; 1077: 216-24. [DOI:10.1016/j.aca.2019.05.029]
24. World Health Organiztion. Laboratory techniques in rabies, volume 1. 5th ed. 2018; 2: 289.
25. Smith JS, Yager PA, Baer GM. A rapid reproducible test for determining rabies neutralizing antibody. Bull World Health Organ. 1973; 48 (5): 535-41.
26. Bordignon J, Zanetti CR. Rabies Diagnosis: Demonstration of Viral Antigens by Flow Cytometry. Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention: Elsevier; 2014; p 43-51. [DOI:10.1016/B978-0-12-800014-4.00004-4]
27. Wunner W, Clark H. Regeneration of DI particles of virulent and attenuated rabies virus: genome characterization and lack of correlation with virulence phenotype. J Gen Virol. 1980; 51 (Pt 1): 69-81. [DOI:10.1099/0022-1317-51-1-69]
28. Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev. 2007; 20 (1): 49-78. [DOI:10.1128/CMR.00002-06]
29. Hernandez R, Brown DT. Growth and Maintenance of Baby Hamster Kidney (BHK) Cells. Curr Protoc in Microbiol. 2010; 17 (1): A.4H.1-A.4H.7. [DOI:10.1002/9780471729259.mca04hs17]
30. Sartori R, Leme J, Caricati CP, Tonso A, Núñez EGF. Model comparison to describe BHK-21 cell growth and metabolism in stirred tank bioreactors operated in batch mode. Braz J Chem Eng. 2018; 35 (2): 441-58. [DOI:10.1590/0104-6632.20180352s20160592]
31. Pay T, Boge A, Menard F, Radlett P. Production of rabies vaccine by an industrial scale BHK 21 suspension cell culture process. Dev Biol Stand. 1985; 60: 171-4.
32. Gallo-Ramírez LE, Nikolay A, Genzel Y, Reichl U. Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev Vaccines. 2015; 14 (9): 1181-95. [DOI:10.1586/14760584.2015.1067144]
33. Perrin P, Madhusudana S, Gontier-Jallet C, Petres S, Tordo N, Merten O-W. An experimental rabies vaccine produced with a new BHK-21 suspension cell culture process: use of serum-free medium and perfusion-reactor system. Vaccine. 1995; 13 (13): 1244-50. [DOI:10.1016/0264-410X(94)00022-F]
34. Frazzati-Gallina NM, Paoli RL, Mourão-Fuches RM, Jorge SA, Pereira CA. Higher production of rabies virus in serum-free medium cell cultures on microcarriers. J. Biotecnol. 2001; 92 (1): 67-72. [DOI:10.1016/S0168-1656(01)00362-5]
35. Alfano R, Pennybaker A, Halfmann P, Huang CYH. Formulation and production of a blood‐free and chemically defined virus production media for VERO cells. Biotechnol Bioeng. 2020; 117 (11): 3277-85. [DOI:10.1002/bit.27486]
36. Westgard JO. Internal quality control: planning and implementation strategies. Ann Clin Biochem. 2003; 40 (6): 593-611. [DOI:10.1258/000456303770367199]
37. World Health Organization. Laboratory techniques in rabies. 1. 2018.
38. Paldurai A, Singh R, Gupta P, Sharma B, Pandey K. Growth Kinetics of Rabies Virus in BHK-21 Cells using fluorescent activated cell sorter (FACS) analysis and a monoclonal antibody based cell-ELISA. J Immunol Vaccine Technol. 2014; 1 (1): 103.
39. Chapman W, Ramshaw I, Crick J. Inactivated rabies vaccine produced from the Flury LEP strain of virus grown in BHK-21 suspension cells. Appl Microbiol. 1973; 26 (6): 858-62. [DOI:10.1128/AM.26.6.858-862.1973]
40. Mengesha A, Hurisa B, Tesfaye T, Lemma H, Niguse D, Wold G, et al. Adaptation of local rabies virus isolates to high growth titer and determination of pathogenicity to develop canine vaccine in Ethiopia. J Vaccines Vaccin. 2014; 5 (245): 2. [DOI:10.4172/2157-7560.1000245]
41. Guo C, Wang C, Luo S, Zhu S, Li H, Liu Y, et al. The adaptation of a CTN-1 rabies virus strain to high-titered growth in chick embryo cells for vaccine development. Virol J. 2014; 11 (1): 1-8. [DOI:10.1186/1743-422X-11-85]
42. Hurisa B, Mengesha A, Newayesilassie B, Kerga S, Kebede G, Bankovisky D, et al. Production of cell culture based anti-rabies vaccine in Ethiopia. Procedia Vaccinol. 2013; 7: 2-7. [DOI:10.1016/j.provac.2013.06.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.