Volume 9, Issue 1 (3-2021)                   JoMMID 2021, 9(1): 38-45 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Allahyari M, amiri S, Vatanara A, Golkar M. Protection and Immune Responses Elicited by rSAG1-PLGA Nanoparticles in C57BL/6 Against Toxoplasma gondii. JoMMID. 2021; 9 (1) :38-45
URL: http://jommid.pasteur.ac.ir/article-1-340-en.html
Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
Abstract:   (1011 Views)
Introduction: This study aimed to evaluate rSAG1-PLGA efficacy as a particulate vaccine in conferring protection against Toxoplasma gondii infection in C57BL/6 mice. In light of our previous studies, we studied mice genotype role in eliciting immune responses by rSAG1-PLGA nanoparticles in this study. Methods: Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles loaded by rSAG1 as a subunit vaccine were prepared, and C57BL/6 mice were subcutaneously immunized twice at a 3-week interval by rSAG1-PLGA, soluble rSAG1, blank PLGA, and one group kept unvaccinated. The characteristics of PLGA nanoparticles, the amounts of produced IFN-γ, IL-10, specific anti-ToxoplasmaIgGs, and the conferred protection against infection by T. gondii RH tachyzoite were assessed. Results: rSAG1-PLGA nanoparticles shared a z-average of about 450nm with negative Zeta potential. Compared with the negative control group, the mice vaccinated with rSAG1-PLGA nanoparticles produced significantly higher amounts of IFN-γ, specific anti-T. gondii IgG antibodies and higher titer of IgG2a, which resulted in longer survival times. Conclusion: The efficiency of rSAG1-PLGA nanoparticles in inducing humoral and cellular responses and consequently partial protection against acute toxoplasmosis in C57BL/6 was confirmed.
Full-Text [PDF 4706 kb]   (385 Downloads)    
Type of Study: Original article | Subject: Immune responses, deficiencies and vaccine candidates
Received: 2021/02/23 | Accepted: 2021/03/20 | Published: 2021/04/27

1. Dubey J, Jones JJIjfp. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol. 2008; 38 (11): 1257-78. [DOI:10.1016/j.ijpara.2008.03.007]
2. Montoya J, Liesenfeld OJC, Toxoplasmosis. Lancet. 2004; 363 (9425):1965-76. [DOI:10.1016/S0140-6736(04)16412-X]
3. Tenter AM, Heckeroth AR, Weiss LMJIjfp. Toxoplasma gondii: from animals to humans. Int J Parasitol. 2000; 30 (12-13): 1217-58. [DOI:10.1016/S0020-7519(00)00124-7]
4. Pifer R, Yarovinsky FJTip. Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol. 2011; 27 (9): 388-93. [DOI:10.1016/j.pt.2011.03.009]
5. Remington JS, Wilson CB, Nizet V, Klein JO, Maldonado Y. Infectious Diseases of the Fetus and Newborn E-Book: Elsevier Health Sciences; 2010.
6. Garcia JL, Innes EA, Katzer FJVD, Therapy. Current progress toward vaccines against Toxoplasma gondii. Vaccine. 2014; 4: 23-37. [DOI:10.2147/VDT.S57474]
7. Li Y, Zhou HJEoobt. Moving towards improved vaccines for Toxoplasma gondii. Expert Opin Biol Ther. 2018; 18 (3): 273-80. [DOI:10.1080/14712598.2018.1413086]
8. Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, et al. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comparative immunology, microbiology and infectious diseases. Comp Immunol Microbiol Infect Dis. 2020; 69: 101414. [DOI:10.1016/j.cimid.2020.101414]
9. LIANG K, LI Y-w, WANG B-b, FU X-y, LIU X-q, HE S-s, et al. Protective immunity induced by recombinant surface protein-1 and surface protein-4 against Toxoplasma gondii infection in mice. 2019; 37 (2): 155.
10. Oledzka G, Bo L, Hiszczynska-Sawicka E, Gelder FB, Kur J, McFarlane RGJSRR. Toxoplasma gondii: Immunological response of sheep to injections of recombinant SAG1, SAG2, GRA1 proteins coupled to the non-toxic microparticle muramyl dipeptide. Small Rumin Res. 2017; 150: 111-7. [DOI:10.1016/j.smallrumres.2017.03.008]
11. Naeem H, Sana M, Islam S, Khan M, Riaz F, Zafar Z, et al. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. Artificial cells, nanomedicine, and biotechnology. Artif Cells Nanomed Biotechnol. 2018; 46 (sup2): 1025-34. [DOI:10.1080/21691401.2018.1478421]
12. Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Petersen EJMdioc. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz. 2009; 104 (2): 252-66. [DOI:10.1590/S0074-02762009000200019]
13. Skwarczynski M, Toth IJN. Recent advances in peptide-based subunit nanovaccines. Nanomedicine. 2014; 9 (17): 2657-69. [DOI:10.2217/nnm.14.187]
14. Garg A, Dewangan HKJCRiTDCS. Nanoparticles as Adjuvants in Vaccine Delivery. Crit Rev Ther Drug Carrier Syst. 2020; 37 (2): 183-204. [DOI:10.1615/CritRevTherDrugCarrierSyst.2020033273]
15. Kelly HG, Kent SJ, Wheatley AKJErov. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019; 18 (3): 269-80. [DOI:10.1080/14760584.2019.1578216]
16. Hudu SA, Shinkafi SH, Shuaibu UJIJPPS. An overview of recombinant vaccine technology, adjuvants and vaccine delivery methods. Int J Pharm Pharm Sci. 2016; 8 (11): 19-24. [DOI:10.22159/ijpps.2016v8i11.14311]
17. Allahyari M, Mohit EJHV. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother. 2016; 12 (3): 806-28. [DOI:10.1080/21645515.2015.1102804]
18. Wang X, Zhang Y, Xue W, Wang H, Qiu X, Liu ZJJoba. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization. J Biomater Appl. 2017; 31 (6): 923-32. [DOI:10.1177/0885328216680343]
19. Gu P, Wusiman A, Zhang Y, Liu Z, Bo R, Hu Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol Pharm. 2019; 16 (12): 5000-12. [DOI:10.1021/acs.molpharmaceut.9b00860]
20. Zhu J, Qin F, Ji Z, Fei W, Tan Z, Hu Y, et al. Mannose-Modified PLGA Nanoparticles for Sustained and Targeted Delivery in Hepatitis B Virus Immunoprophylaxis. AAPS PharmSciTech. 2020; 21 (1): 1-9. [DOI:10.1208/s12249-019-1526-5]
21. Tosyali OA, Allahverdiyev A, Bagirova M, Abamor ES, Aydogdu M, Dinparvar S, et al. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis. Mat Sci Eng C. 2021; 120:111684. [DOI:10.1016/j.msec.2020.111684]
22. Thompson EA, Ols S, Miura K, Rausch K, Narum DL, Spångberg M, et al. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25. JCI insight. 2018; 3 (10): e120692. [DOI:10.1172/jci.insight.120692]
23. Ashhurst AS, Parumasivam T, Chan JGY, Lin LC, Flórido M, West NP, et al. PLGA particulate subunit tuberculosis vaccines promote humoral and Th17 responses but do not enhance control of Mycobacterium tuberculosis infection. PloS one. 2018; 13 (3): e0194620. [DOI:10.1371/journal.pone.0194620]
24. Roozbehani M, Falak R, Mohammadi M, Hemphill A, Razmjou E, Reza Meamar A, et al. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection. Vaccine. 2018; 36 (41): 6124-32. [DOI:10.1016/j.vaccine.2018.08.068]
25. Dukaczewska A, Tedesco R, Liesenfeld O. Experimental models of ocular infection with Toxoplasma gondii. Eur J Microbiol Immunol. 2015; 5 (4): 293-305. [DOI:10.1556/1886.2015.00045]
26. Liesenfeld O, Kosek J, Remington JS, Suzuki Y. Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med. 1996; 184 (2): 597-607. [DOI:10.1084/jem.184.2.597]
27. Lu F, Huang S, Hu MS, Kasper LH. Experimental ocular toxoplasmosis in genetically susceptible and resistant mice. Infect Immun. 2005; 73 (8): 5160-5. [DOI:10.1128/IAI.73.8.5160-5165.2005]
28. Allahyari M, Mohabati R, Babaie J, Amiri S, Siavashani ZJ, Zare M, et al. Production of in-vitro refolded and highly antigenic SAG1 for development of a sensitive and specific Toxoplasma IgG ELISA. J Immunol Methods. 2015; 416: 157-66. [DOI:10.1016/j.jim.2014.11.012]
29. Allahyari M, Mohabati R, Amiri S, Rastaghi ARE, Babaie J, Mahdavi M, et al. Synergistic effect of rSAG1 and rGRA2 antigens formulated in PLGA microspheres in eliciting immune protection against Toxoplasama gondii. Exp Parasitol. 2016; 170: 236-46. [DOI:10.1016/j.exppara.2016.09.008]
30. Allahyari M, Mohabati R, Vatanara A, Golkar MJJoDDS, Technology. In-vitro and in-vivo comparison of rSAG1-loaded PLGA prepared by encapsulation and adsorption methods as an efficient vaccine against Toxoplasma gondii". 2020; 55: 101327. [DOI:10.1016/j.jddst.2019.101327]
31. Wu L, Chen S-x, Jiang X-g, Fu X-l, Shen Y-j, Cao J-pJEp. Separation and purification of Toxoplasma gondii tachyzoites from in vitro and in vivo culture systems. Exp Parasitol. 2012; 130 (1): 91-4. [DOI:10.1016/j.exppara.2011.10.006]
32. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat VJJocr. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012; 161 (2): 505-22. [DOI:10.1016/j.jconrel.2012.01.043]
33. Sahin A, Esendagli G, Yerlikaya F, Caban-Toktas S, Yoyen-Ermis D, Horzum U, et al. A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles' characteristics and efficacy of intracellular delivery. Artif Cells Nanomed Biotechnol. 2017; 45 (8): 1657-64. [DOI:10.1080/21691401.2016.1276924]
34. van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa HJAddr. Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev. 2014; 74: 28-34. [DOI:10.1016/j.addr.2014.05.011]
35. Yarovinsky FJNRI. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol. 2014; 14 (2): 109-21. [DOI:10.1038/nri3598]
36. Chuang S-C, Ko J-C, Chen C-P, Du J-T, Yang C-DJP, vectors. Induction of long-lasting protective immunity against Toxoplasma gondii in BALB/c mice by recombinant surface antigen 1 protein encapsulated in poly (lactide-co-glycolide) microparticles. Parasit Vectors. 2013; 6: 34. [DOI:10.1186/1756-3305-6-34]
37. Dodangeh S, Fasihi-Ramandi M, Daryani A, Valadan R, Asgarian-Omran H, Hosseininejad Z, et al. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice. Microb Pathog. 2021: 153: 104764. [DOI:10.1016/j.micpath.2021.104764]
38. Fereig RM, Abdelbaky HH, Mohamed AEA, Nishikawa YJJVMAS. Recombinant subunit vaccines against Toxoplasma gondii: Successful experimental trials using recombinant DNA and proteins in mice in a period from 2006 to 2018. J Vet Med Anim Sci 2018; 1: 1005.
39. Dubey J, Ferreira L, Martins J, McLEOD RJP. Oral oocyst-induced mouse model of toxoplasmosis: effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology. 2012; 139 (1): 1-13. [DOI:10.1017/S0031182011001673]
40. Dodangeh S, Daryani A, Sharif M, Aghayan SA, Pagheh AS, Sarvi S, et al. A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis. 2019; 38 (4): 617-29. [DOI:10.1007/s10096-018-03442-6]
41. El‐Malky M, Shaohong L, Kumagai T, Yabu Y, Noureldin MS, Saudy N, et al. Protective effect of vaccination with Toxoplasma lysate antigen and CpG as an adjuvant against Toxoplasma gondii in susceptible C57BL/6 mice. Microbiol Immunol. 2005; 49 (7): 639-46. [DOI:10.1111/j.1348-0421.2005.tb03656.x]
42. Babaie J, Amiri S, Homayoun R, Azimi E, Mohabati R, Berizi M, et al. Immunization of C57BL/6 mice with GRA2 combined with MPL conferred partial immune protection against Toxoplasma gondii. Iran Biomed J. 2018; 22 (1): 22-32.
43. Chen R, Lu S-h, Tong Q-b, Lou D, Shi D-y, Jia B-b, et al. Protective effect of DNA-mediated immunization with liposome-encapsulated GRA4 against infection of Toxoplasma gondii. 2009; 10 (7): 512-21. [DOI:10.1631/jzus.B0820300]
44. Golkar M, Shokrgozar M-A, Rafati S, Musset K, Assmar M, Sadaie R, et al. Evaluation of protective effect of recombinant dense granule antigens GRA2 and GRA6 formulated in monophosphoryl lipid A (MPL) adjuvant against Toxoplasma chronic infection in mice. Vaccine. 2007; 25 (21): 4301-11. [DOI:10.1016/j.vaccine.2007.02.057]
45. Mendes ÉA, Caetano BC, Penido ML, Bruna-Romero O, Gazzinelli RTJV. MyD88-dependent protective immunity elicited by adenovirus 5 expressing the surface antigen 1 from Toxoplasma gondii is mediated by CD8+ T lymphocytes. Vaccine. 2011; 29 (27): 4476-84. [DOI:10.1016/j.vaccine.2011.04.044]
46. Caetano BC, Bruña-Romero O, Fux B, Mendes EA, Penido ML, Gazzinelli RTJHgt. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of Toxoplasma gondii induces immune response and protection against infection in mice. Hum Gene Ther. 2006; 17 (4): 415-26. [DOI:10.1089/hum.2006.17.415]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.