Volume 8, Issue 4 (10-2020)                   JoMMID 2020, 8(4): 161-165 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fenderski A, Ahani Azari A, Dadgar T. Phenotypic Detection of Beta-lactamases among Proteus mirabilis, Enterobacter cloacae, and Citrobacter freundii Isolates from Urinary Samples in Gorgan, Northeast Iran. JoMMID 2020; 8 (4) :161-165
URL: http://jommid.pasteur.ac.ir/article-1-335-en.html
Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Abstract:   (1615 Views)
Introduction: The data on members of the genera Proteus, Pseudomonas, Enterobacter, Citrobacter, and Staphylococcus as the etiologic agents of urinary tract infections (UTIs) is not much.  This study investigated the frequency of various beta-lactamases in urine isolates of Proteus mirabilis, Enterobacter cloacae, and Citrobacter freundii in Gorgan, Golestan province. Methods: A total of 632 urine samples were collected from hospitalized patients in a teaching hospital. The samples were cultured on blood agar and Eosin Methylene blue agar and incubated overnight at 37°C. The cultures with a ≥105 CFU/mL bacterial count were defined as positive for UTI. Bacteria identification was performed using standard biochemical methods and the API20E enteric identification system. The antibiotic resistance pattern was determined by the Kirby-Bauer disk diffusion method, and a phenotypic confirmatory test was used for detecting ESBL, MBL, and AmpC beta-lactamases producers. Results: Out of 632 samples, 317 (50.1%) were positive for UTIs, and 27 (8.5%), 21 (6.6%), and 12 (3.7%) were positive for Enterobacter cloacae, Citrobacter freundii, and Proteus mirabilis isolates, respectively. All the isolates were sensitive to piperacillin-tazobactam and colistin. The prevalence of ESBL and AmpC beta-lactamases in P. mirabilis isolates was higher than the other isolates, but No MBL producers were detected. Conclusions: In this study, the high frequency of ESBL and AmpC beta-lactamases in P. mirabilis isolates may suggest an increasing trend in resistance to cephalosporins and monobactams, which could have a significant impact on the management and treatment of UTI caused by this organism. Therefore, continuous monitoring is required to control the spread of β-lactamase-producing isolates in different geographical areas.
 
Full-Text [PDF 1200 kb]   (959 Downloads)    
Type of Study: Original article | Subject: Anti-microbial agents, resistance and treatment protocols
Received: 2021/01/13 | Accepted: 2020/10/19 | Published: 2021/02/13

References
1. L. Flores-Mireles A, Walker N, Caparon M, Hultgren S. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13 (5): 269-84. [DOI:10.1038/nrmicro3432]
2. Kumar Y, Sood S, Sharma A, Mani KR. Antibiogram and characterization of resistance markers among Escherichia coli isolates from urinary tract infections. J Infect Dev Ctries. 2013; 7 (7): 513-9. [DOI:10.3855/jidc.2706]
3. Bitew A, Molalign T, Chanie M. Species distribution and antibiotic susceptibility profile of bacterial uropathogens among patients complaining urinary tract infections. BMC Infect Dis. 2017; 17 (654): 1-8. [DOI:10.1186/s12879-017-2743-8]
4. Mohammed M., Alnour T., Shakurfo O., Aburass M. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. Asian Pac J Trop Dis. 2016; 9 (8): 771-6. [DOI:10.1016/j.apjtm.2016.06.011]
5. Ranjan K. P. & Ranjan N. Citrobacter: An emerging health care associated urinary pathogen. Urol Ann. 2013; 5 (4): 313-4.
6. Habibi H., Ahani Azari A., Danesh A. Incidence of Beta-Lactamase Enzymes among Klebsiella pneumonia Isolates Causing Urinary Tract Infections in Aliabad, North-East Iran. Infect Epidemiol Microbiol. 2020; 6 (3): 193-200. [DOI:10.29252/iem.6.3.193]
7. Ghotasloua R, Sadeghia MR, Akhib MT, Hasanib A, Asgharzadeh M. Prevalence and Antimicrobial Susceptibility Patterns of ESBL, AmpC and Carbapenemase-producing Enterobactericeae Isolated from Hospitalized Patients in Azerbaijan, Iran. Iran. J Pharm Sci. 2018; 17 (Special Issue): 79-88.
8. Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G. The Italian ESBL Study Group. Occurrence of Extended-Spectrum β-Lactamases in Members of the Family Enterobacteriaceae in Italy: Implications for Resistance to β-Lactams and Other Antimicrobial Drugs. Antimicrob Agents Chemother. 2002; 196-202. [DOI:10.1128/AAC.46.1.196-202.2002]
9. Hosseini SA, Ahani Azari A, Danesh A. Frequency of Various Types of Beta-Lactamase Enzymes in Escherichia coli Strains Isolated From Urine Samples in Aliabad, North-east of Iran. Avicenna J Clin Microbiol Infect.2019; 6 (4): 106-110. [DOI:10.34172/ajcmi.2019.19]
10. Schaffer J & Pearson M. Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr. 2015; 3 (5):1-66. [DOI:10.1128/microbiolspec.UTI-0017-2013]
11. Metri B, Jyothi P, Peerapur B. Antibiotic resistance in Citrobacter spp. isolated from urinary tract infection. Urol Ann. 2013; 5 (4): 312-3. [DOI:10.4103/0974-7796.120295]
12. Clinical and Laboratory Standards Institute. M02: Performance standards for antimicrobial disk susceptibility tests (ISBN: 1-56238-835-5). Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
13. Yousefi Mashouf P, Alijani P, Saidijam M, Alikhani MY, Rashidi H. Study of antibiotic resistance pattern and phenotypic detection of ESBLs in Klebsiella pneumoniae strains isolated from clinical samples and determination of minimum inhibitory concentrations of imipenem and ceftazidim antibiotics. J Hamadan Univ Med Sci. 2014; 20 (4): 295-302.
14. Mobasherizadeh S, Shokri D, Zargarzadeh AH, Jalalpour S, Ebneshahidi SA, Sajadi M. Antimicrobial resistance surveillance among hospitalized and non-hospitalized extend-spectrum beta-lactamase producing Escherichia coli from four tertiary-care hospitals in Isfahan, Iran; 2008-2011. Afr J Microbiol Res. 2012; 6 (5): 953-9. [DOI:10.5897/AJMR-11-943]
15. UshA K, Kumar E, Gopal DS. Occurrence of various beta-lactamase producing gram-negative bacilli in the hospital effluent. Asian J Pharm Clin Res. 2013; 6 (3): 42-6.
16. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp. Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005; 43 (8): 4163-7. [DOI:10.1128/JCM.43.8.4163-4167.2005]
17. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo- β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002; 40 (10): 3798- 801. [DOI:10.1128/JCM.40.10.3798-3801.2002]
18. Rizvi M, Fatima N, Rashid M, Shukla I, Malik A, Usman A, Siddiqui SH. Extended spectrum AmpC and metallo-beta-lactamases in Serratia and Citrobacter spp. in a disc approximation assay. J Infect Dev Ctries. 2009; 3 (4): 285-294. [DOI:10.3855/jidc.126]
19. Cai Y, Chen C, Zhao M, Yu X, Lan K, Liao K, et al. High Prevalence of Metallo-b-Lactamase-Producing Enterobacter cloacae From Three Tertiary Hospitals in China. Front Microbiol. 2019; 10: 1610. [DOI:10.3389/fmicb.2019.01610]
20. Adwan GH, Rabaya D, Adwan K, Al-Sheboul S. Prevalence of β-lactamases in clinical isolates of Enterobacter cloacae in the West Bank-Palestine. Int J Med Sci Public Health. 2016, 5 (7): 49-59.
21. Shahandeh Z, Sadighian F, Beigom Rekabpor KH. Phenotypic Detection of ESBL, MBL (IMP-1), and AmpC Enzymes, and Their Coexistence in Enterobacter and Klebsiella Species Isolated From Clinical Specimens. Int J Enteric Pathog. 2016; 4 (2): 1-7. [DOI:10.17795/ijep32812]
22. Haider M, Rizvi M, Fatima N, Shukla I., Malik A. Necessity of detection of extended spectrum beta-lactamase, AmpC and metallo-beta-lactamases in Gram-negative bacteria isolated from clinical specimens. Muller J Med Sci Res. 2014; 5 (1): 23-28. [DOI:10.4103/0975-9727.128939]
23. Kumar Praharaj A, Khajuria A, Kumar M, Grover N. Phenotypic detection and molecular characterization of beta-lactamase genes among Citrobacter species in a tertiary care hospital. Avicenna J Med. 2016; 6 (1): 17-27. [DOI:10.4103/2231-0770.173578]
24. Helmy M & Wasfi R. Phenotypic and Molecular Characterization of Plasmid Mediated AmpC -Lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis Isolated from Urinary Tract Infections in Egyptian Hospitals. BioMed Res Int. 2014; 1-8. [DOI:10.1155/2014/171548]
25. Ibadin E, Omoregie R, Ohiorenuan Igbarumah I, Atinuke Anogie N, Oroboghae Ogefere H. Prevalence of Extended Spectrum β-Lactamase, AmpC β-Lactamase and Metallo-β-Lactamase among Gram-Negative Bacilli Recovered from Clinical Specimens in Benin City, Nigeria. Int J Enteric Pathog. 2017; 5 (3): 85-91. [DOI:10.15171/ijep.2017.20]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.