Volume 9, Issue 1 (3-2021)                   JoMMID 2021, 9(1): 46-54 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibi-Pirkoohi M, Shahriari A G, Ghodoum Parizipour M H. Transient Gene Expression: an Approach for Recombinant Vaccine Production. JoMMID. 2021; 9 (1) :46-54
URL: http://jommid.pasteur.ac.ir/article-1-334-en.html
Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran
Abstract:   (1056 Views)
The production of recombinant vaccines in green plants is an attractive and promising topic in genetic engineering. However, the stable transformation of green plants is a time-consuming, costly, and labor-intensive practice. Moreover, public concerns about genetically modified plants put another limitation on the development and release of transgenic plant-based recombinant vaccines. These shortcomings were addressed by developing transient gene expression systems that allow researchers to investigate candidate recombinant vaccines quickly without tedious work and high costs. A comprehensive literature review was used to gather relevant information. This approach has received much attention in various recombinant vaccine production platforms, including mammalian cell culture, insect cell culture, yeast expression systems, and, more importantly, in plant hosts. Due to their simplicity and efficiency, transient gene expression systems are now widely used to validate gene constructs and transgene expression within plant tissues. This paper describes the concept of transient gene expression and discusses the significant advantages of this approach for producing recombinant vaccines. Notably, the major types of transient gene expression viz. agroinfiltration, viral-based systems, and application of naked plasmid in plant cell culture are introduced, and some examples illustrate the pros and cons of each system. Our literature review also discusses some practical notes on the successful application of this system to provide a more comprehensive image of transient gene expression applicability in green plants. As a whole, this review contributes to the existing literature by shedding more light on various aspects of transient gene expression that have not been addressed thoroughly yet.
Full-Text [PDF 1734 kb]   (458 Downloads)    
Type of Study: Review article | Subject: Immune responses, deficiencies and vaccine candidates
Received: 2021/01/7 | Accepted: 2021/03/20 | Published: 2021/04/27

1. Shahriari A. G, Habibi-Pirkoohi M. Plant-Based Recombinant Vaccine: Fact or Fiction? Galen Med J. 2017; 6 (4): 268-80.
2. Yusibov V, Streatfield S. J, Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin. 2011; 7 (3): 313-21. [DOI:10.4161/hv.7.3.14207]
3. Rybicki E. Plant-produced vaccines: promise and reality. Drug Discov Today. 2009; 14 (1-2): 16-24. [DOI:10.1016/j.drudis.2008.10.002]
4. Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher T, et. Application of a scalable plant transient gene expression platform for malaria vaccine development. Front Plant Sci. 2015; 6: 1169. [DOI:10.3389/fpls.2015.01169]
5. Habibi-Pirkoohi M, Mohkami A. Recombinant vaccine production in green plants: State of art. J Cell Mol Res. 2015; 7 (1): 59-67.
6. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, et al. Soybean DREB1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. Plant J. 2015; 81 (3): 505-18. [DOI:10.1111/tpj.12746]
7. Chen Q, Lai H. Gene delivery into plant cells for recombinant protein production. BioMed Res Int. 2015. [DOI:10.1155/2015/932161]
8. Habibi-Pirkoohi M, Malekzadeh-Shafaroudi S, Marashi H, Moshtaghi N, Nasiri M, Zibaee S. The transient expression of coat protein of Foot and Mouth Disease Virus (FMDV) in spinach (Spinaciaoleracea) using Agroinfiltration. J. Plant Mol Breed. 2014; 2 (2): 18-27.
9. Komarova T, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov Y. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines. 2010; 9 (8): 859-76. [DOI:10.1586/erv.10.85]
10. Hong J, Demirji J, Blackstock D, Lee J, Dinh T, Goh A. Development of an alternating tangential flow (ATF) perfusion‐based transient gene expression (TGE) bioprocess for universal influenza vaccine. Biotechnol Prog. 2019; 35 (5). [DOI:10.1002/btpr.2831]
11. Beihaghi, M, Marashi H, Bagheri A, Sankian M. Transient expression of CCL21as recombinant protein in tomato. Biotechnol Rep. 2017; 17: 10-15. [DOI:10.1016/j.btre.2017.11.007]
12. Mardanova E. S, Ravin N. V. Plant-produced Recombinant Influenza A Vaccines Based on the M2e Peptide. Curr Pharm Des. 2018; 24 (12): 1317-24. [DOI:10.2174/1381612824666180309125344]
13. Kopertekh L, Schiemann J. Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives. Curr Med Chem. 2019; 26 (3): 365-80. [DOI:10.2174/0929867324666170718114724]
14. Hefferon K. L. Recent advances in virus expression vector strategies for vaccine production in plants. Virol Mycol. 2012; 1 (2): 105-24. [DOI:10.4172/2161-0517.1000105]
15. Sabalza M, Christou P, Capell T. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett. 2014; 36 (12): 2367-79. [DOI:10.1007/s10529-014-1621-3]
16. Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian A, Ajdary S, et al. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum a Protein With Potential Clinical Applications. Hepat Mon. 2014; 14 (11): e20524. [DOI:10.5812/hepatmon.20524]
17. Lombardi R, Circelli P, Villani M, Buriani G, Nardi L, Coppola V, et al. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus. BMC Biotechnol. 2009; 9 (1): 96. [DOI:10.1186/1472-6750-9-96]
18. He J, Lai H, Brock C, Chen Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. BioMed Res Int. 2012. [DOI:10.1155/2012/106783]
19. Matsuda R, Kushibiki T, Fujiuchi N, Fujiwara K. Agroinfiltration of leaves for deconstructed viral vector-based transient gene expression: infiltrated leaf area affects recombinant hemagglutinin yield. Hortic Environ Biotechnol. 2018; 59 (4): 547-55. [DOI:10.1007/s13580-018-0047-6]
20. Potera C. Vaccine manufacturing gets boost from tobacco plants: Canada-based medicago opens US Facility to exploit its influenza vaccine production method. Genet Eng Biotechnol News. 2012; 32 (6): 8-10. [DOI:10.1089/gen.32.6.02]
21. Habibi-Pirkoohi M, Malekzadeh-Shafaroudi S, Marashi H, Zibaee S, Mohkami A, Nejatizadeh S. Transient expression of coat protein of Foot and Mouth Disease Virus (FMDV) in Alfalfa (Medicago sativa) by Agroinfiltration. J Cell Mol Res. 2016; 8 (2): 83-9.
22. Chen Q, Dent M, Hurtado J, Stahnke J, McNulty A, Leuzinger K, et al. Transient protein expression by agroinfiltration in lettuce. Methods Mol Biol. 2016; 1385: 55-67. [DOI:10.1007/978-1-4939-3289-4_4]
23. Norkunas K, Harding R, Dale J, Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant methods. 2018; 25; 14: 71. [DOI:10.1186/s13007-018-0343-2]
24. Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr Purif. 2020; 173: 105616. [DOI:10.1016/j.pep.2020.105616]
25. Kitajima S, Miura K, Yasuda J. Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system. Plant Biotechnol. 2020; 37 (1): 89-92. [DOI:10.5511/plantbiotechnology.19.1216a]
26. Gleba Y, Klimyuk V, and Marillonnet S. Magnifection-a new platform for expressing recombinant vaccines in plants. Vaccine. 2005; 23 (17-18): 2042-8. [DOI:10.1016/j.vaccine.2005.01.006]
27. Fahad S, Khan F, Pandupuspitasari N, Ahmed M, Liao Y, Waheed M, et al. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett. 2015; 37 (2): 265-79. [DOI:10.1007/s10529-014-1699-7]
28. Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen C, et al. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine. 2008; 26 (15): 1846-54. [DOI:10.1016/j.vaccine.2008.01.053]
29. Zelada A, Calamante G, de la Paz Santangelo M, Bigi F, Verna F, Mentaberry A, et al. Expression of tuberculosis antigen ESAT-6 in Nicotiana tabacum using a potato virus X-based vector. Tuberculosis. 2006; 86 (3-4): 263-7. [DOI:10.1016/j.tube.2006.01.003]
30. Muneerappa S, Narayanappa AT, Doddamane M. Production of therapeutic oral vaccines from transgenic plants-a promising way in treatment of diseases. Int J Vaccines Vaccin. 2018; 5 (3): 63-7.
31. Iyappan G, Shanmugaraj BM, Inchakalody V, Ma JC, Ramalingam S. Potential of plant biologics to tackle the epidemic like situations-case studies involving viral and bacterial candidates. Int J Infect Dis. 2018; 73: 363. [DOI:10.1016/j.ijid.2018.04.4236]
32. M Carmen Cañizares, Liz Nicholson, George P Lomonossoff. Use of viral vectors for vaccine production in plants. Immun Cell Biol. 2005; 83 (3): 263-70. [DOI:10.1111/j.1440-1711.2005.01339.x]
33. Ho Yong Chung, Hyun Ho Lee, Kyung Il Kim, Ha Young Chung, Jeon Hwang-Bo, Jong Hwa Park, et al. Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice. Plant Cell Rep. 2011; 30 (8): 1513-21. [DOI:10.1007/s00299-011-1062-6]
34. Gómez E, Zoth S, Berinstein A. Plant-based vaccines for potential human application. Hum Vaccin. 2009; 5 (11): 738-44. [DOI:10.4161/hv.5.11.9879]
35. Langeveld J. P, Brennan F, Martı́nez-Torrecuadrada J. L, Jones T, Boshuizen R, Vela C, et al. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus. Vaccine. 2001; 19 (27): 3661-70. [DOI:10.1016/S0264-410X(01)00083-4]
36. Sanchez-Navarro J, Miglino R, Ragozzino A, Bol J. Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Arch Virol. 2001; 146 (5): 923-39. [DOI:10.1007/s007050170125]
37. A Wigdorovitz, C Carrillo, M J Dus Santos, K Trono, A Peralta, M C Gómez, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology. 1999; 255 (2): 347-53. [DOI:10.1006/viro.1998.9590]
38. Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, et al. Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine. 2007; 25 (36): 6646-54. [DOI:10.1016/j.vaccine.2007.06.029]
39. Marques L, da Silva B, Magalhães I, Mendes M, de Almeida L, Guedes M. Production of dengue 2 envelope domain III in plant using CPMV-based vector system. Proceedings of the 5th Congress of the Brazilian Biotechnology Society (SBBIOTEC); 2014 Oct 1; 8 (Suppl 4): 80. [DOI:10.1186/1753-6561-8-S4-P80]
40. Golovkin M, Spitsin S, Andrianov V, Smirnov Y, Xiao Y, Pogrebnyak N, et al. Smallpox subunit vaccine produced in planta confers protection in mice. Proc Natl Acad Sci U S A. 2007; 104 (16): 6864-9. [DOI:10.1073/pnas.0701451104]
41. Ibrahim A, Odon V, Kormelink R. Plant viruses in plant molecular pharming: towards the use of enveloped viruses. Front Plant Sci. 2019; 10: 803. [DOI:10.3389/fpls.2019.00803]
42. Dekeyser R, Claes B, De Rycke R, Habets M, Van Montagu M, Caplan A. Transient gene expression in intact and organized rice tissues. Plant Cell. 1990; 2 (7): 591-602. [DOI:10.2307/3869123]
43. Yoshioka Y, Takahashi Y, Matsuoka K, Nakamura K, Koizumi J, Kojima M, et al. Transient gene expression in plant cells mediated by Agrobacterium tumefaciens: application for the analysis of virulence loci. Plant Cell Physiol. 1996; 37 (6): 782-9. [DOI:10.1093/oxfordjournals.pcp.a029013]
44. Vermij P, Waltz E. USDA approves the first plant-based vaccine. Nat Biotechnol. 2006; 24: 233-4.
45. Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines. 2015; 3 (5-6): 139-54. [DOI:10.1177/2051013615613272]
46. Schillberg S, Zimmermann S, Priifer D, Schuman D, Fischer R. Transient gene expression in plant protoplasts. In: Recombinant proteins from plants. Humana Press; 1998. p. 165-75. [DOI:10.1007/978-1-60327-260-5_13]
47. Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, et al. Isolation, culture, and transient transformation of plant protoplasts. Curr Protoc Cell Biol. 2014; 63 (1): 2.8.1-17. [DOI:10.1002/0471143030.cb0208s63]
48. Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol. 2017; 17: 29. [DOI:10.1186/s12896-017-0349-2]
49. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZNB, etc. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol. 2016; 18: 21-42.
50. Dorokhov Y, Sheveleva A, Frolova O. Y, Komarova T, Zvereva A, Ivanov P, etc. Superexpression of tuberculosis antigens in plant leaves. Tuberculosis, 2007; 87 (3): 218-24. [DOI:10.1016/j.tube.2006.10.001]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.